{"title":"Enhancing Microwave-Assisted Vacuum Freeze-Drying Efficiency and Quality of Pineapple Slices Through Osmotic Dehydration and Ultrasonic Pretreatment","authors":"Wei-Mon Yan, Xuan-Lin Chen, Bo-Lin Chen, Uzair Sajjad, Tian-Hu Wang, Mohammad Amani","doi":"10.1111/jfpe.70010","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This article investigates the use of osmotic dehydration and ultrasonic pretreatment to improve the efficiency of vacuum freeze-drying (FD) and microwave-assisted vacuum freeze-drying (FD-VMD) methods. The study examines the influence of pretreatment time, osmotic solution concentration, and ultrasonic power on the moisture content of the pineapple samples. The results show that osmotic dehydration pretreatment can reduce moisture content and weight by up to 15.2% and 8.36%, respectively, while increasing sugar content by 7.5°Bx. Ultrasonic pretreatment is even more effective, with moisture content and weight decreasing by up to 37.5% and 19.45%, respectively, and sugar content decreasing by 4.1°Bx. The FD process shows no significant difference in moisture curve between pretreated and untreated samples, but the pretreated samples have a lower initial moisture content, leading to a potential 35.01% reduction in drying time. The study also evaluates the quality of the dried samples using eight performance indicators, finding that osmotic dehydration pretreatment improves sugar content, crispiness, and flavor, whereas ultrasonic pretreatment enhances rehydration rate, reduces final moisture and sugar content, and results in a softer texture. Additionally, pretreatment significantly reduces drying time and energy consumption, particularly ultrasonic pretreatment with a 120 W power and 40-min duration, significantly reduces drying time and energy consumption by up to 30.02%. These findings demonstrate the positive impact of pretreatment on the energy efficiency and quality of pineapple slices under the FD-VMD process.</p>\n </div>","PeriodicalId":15932,"journal":{"name":"Journal of Food Process Engineering","volume":"48 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Process Engineering","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.70010","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates the use of osmotic dehydration and ultrasonic pretreatment to improve the efficiency of vacuum freeze-drying (FD) and microwave-assisted vacuum freeze-drying (FD-VMD) methods. The study examines the influence of pretreatment time, osmotic solution concentration, and ultrasonic power on the moisture content of the pineapple samples. The results show that osmotic dehydration pretreatment can reduce moisture content and weight by up to 15.2% and 8.36%, respectively, while increasing sugar content by 7.5°Bx. Ultrasonic pretreatment is even more effective, with moisture content and weight decreasing by up to 37.5% and 19.45%, respectively, and sugar content decreasing by 4.1°Bx. The FD process shows no significant difference in moisture curve between pretreated and untreated samples, but the pretreated samples have a lower initial moisture content, leading to a potential 35.01% reduction in drying time. The study also evaluates the quality of the dried samples using eight performance indicators, finding that osmotic dehydration pretreatment improves sugar content, crispiness, and flavor, whereas ultrasonic pretreatment enhances rehydration rate, reduces final moisture and sugar content, and results in a softer texture. Additionally, pretreatment significantly reduces drying time and energy consumption, particularly ultrasonic pretreatment with a 120 W power and 40-min duration, significantly reduces drying time and energy consumption by up to 30.02%. These findings demonstrate the positive impact of pretreatment on the energy efficiency and quality of pineapple slices under the FD-VMD process.
期刊介绍:
This international research journal focuses on the engineering aspects of post-production handling, storage, processing, packaging, and distribution of food. Read by researchers, food and chemical engineers, and industry experts, this is the only international journal specifically devoted to the engineering aspects of food processing. Co-Editors M. Elena Castell-Perez and Rosana Moreira, both of Texas A&M University, welcome papers covering the best original research on applications of engineering principles and concepts to food and food processes.