Negative immune regulation contributes to disease tolerance in Drosophila melanogaster

IF 1.6 4区 农林科学 Q2 ENTOMOLOGY
Arun Prakash, Katy M. Monteith, Pedro F. Vale
{"title":"Negative immune regulation contributes to disease tolerance in Drosophila melanogaster","authors":"Arun Prakash,&nbsp;Katy M. Monteith,&nbsp;Pedro F. Vale","doi":"10.1111/phen.12464","DOIUrl":null,"url":null,"abstract":"<p>Disease tolerance is an infection phenotype where hosts show relatively high health despite harbouring elevated pathogen loads. Variation in the ability to reduce immunopathology may explain why some hosts can tolerate higher pathogen burdens with reduced pathology. Negative immune regulation would therefore appear to be a clear candidate for a mechanism underlying disease tolerance. Here, we examined how the negative regulation of the immune deficiency (IMD) pathway affects disease tolerance in <i>Drosophila melanogaster</i> when infected with four doses of the gram-negative bacterial pathogen <i>Pseudomonas entomophila</i>. We find that while flies unable to regulate the IMD response exhibited higher expression of antimicrobial peptides and lower bacterial loads as expected, this was not accompanied by a proportional reduction in mortality. Instead, ubiquitous UAS-RNAi knockdown of negative regulators of IMD (<i>pirk</i> and <i>caudal</i>) substantially increased the per-pathogen-mortality in both males and females across all tested infectious doses. Our results therefore highlight that in addition to regulating an efficient pathogen clearance response, negative regulators of IMD also contribute to disease tolerance.</p>","PeriodicalId":20081,"journal":{"name":"Physiological Entomology","volume":"50 1","pages":"48-56"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/phen.12464","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/phen.12464","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Disease tolerance is an infection phenotype where hosts show relatively high health despite harbouring elevated pathogen loads. Variation in the ability to reduce immunopathology may explain why some hosts can tolerate higher pathogen burdens with reduced pathology. Negative immune regulation would therefore appear to be a clear candidate for a mechanism underlying disease tolerance. Here, we examined how the negative regulation of the immune deficiency (IMD) pathway affects disease tolerance in Drosophila melanogaster when infected with four doses of the gram-negative bacterial pathogen Pseudomonas entomophila. We find that while flies unable to regulate the IMD response exhibited higher expression of antimicrobial peptides and lower bacterial loads as expected, this was not accompanied by a proportional reduction in mortality. Instead, ubiquitous UAS-RNAi knockdown of negative regulators of IMD (pirk and caudal) substantially increased the per-pathogen-mortality in both males and females across all tested infectious doses. Our results therefore highlight that in addition to regulating an efficient pathogen clearance response, negative regulators of IMD also contribute to disease tolerance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological Entomology
Physiological Entomology 生物-昆虫学
CiteScore
2.80
自引率
6.70%
发文量
21
审稿时长
>12 weeks
期刊介绍: Physiological Entomology broadly considers “how insects work” and how they are adapted to their environments at all levels from genes and molecules, anatomy and structure, to behaviour and interactions of whole organisms. We publish high quality experiment based papers reporting research on insects and other arthropods as well as occasional reviews. The journal thus has a focus on physiological and experimental approaches to understanding how insects function. The broad subject coverage of the Journal includes, but is not limited to: -experimental analysis of behaviour- behavioural physiology and biochemistry- neurobiology and sensory physiology- general physiology- circadian rhythms and photoperiodism- chemical ecology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信