{"title":"Negative immune regulation contributes to disease tolerance in Drosophila melanogaster","authors":"Arun Prakash, Katy M. Monteith, Pedro F. Vale","doi":"10.1111/phen.12464","DOIUrl":null,"url":null,"abstract":"<p>Disease tolerance is an infection phenotype where hosts show relatively high health despite harbouring elevated pathogen loads. Variation in the ability to reduce immunopathology may explain why some hosts can tolerate higher pathogen burdens with reduced pathology. Negative immune regulation would therefore appear to be a clear candidate for a mechanism underlying disease tolerance. Here, we examined how the negative regulation of the immune deficiency (IMD) pathway affects disease tolerance in <i>Drosophila melanogaster</i> when infected with four doses of the gram-negative bacterial pathogen <i>Pseudomonas entomophila</i>. We find that while flies unable to regulate the IMD response exhibited higher expression of antimicrobial peptides and lower bacterial loads as expected, this was not accompanied by a proportional reduction in mortality. Instead, ubiquitous UAS-RNAi knockdown of negative regulators of IMD (<i>pirk</i> and <i>caudal</i>) substantially increased the per-pathogen-mortality in both males and females across all tested infectious doses. Our results therefore highlight that in addition to regulating an efficient pathogen clearance response, negative regulators of IMD also contribute to disease tolerance.</p>","PeriodicalId":20081,"journal":{"name":"Physiological Entomology","volume":"50 1","pages":"48-56"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/phen.12464","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/phen.12464","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Disease tolerance is an infection phenotype where hosts show relatively high health despite harbouring elevated pathogen loads. Variation in the ability to reduce immunopathology may explain why some hosts can tolerate higher pathogen burdens with reduced pathology. Negative immune regulation would therefore appear to be a clear candidate for a mechanism underlying disease tolerance. Here, we examined how the negative regulation of the immune deficiency (IMD) pathway affects disease tolerance in Drosophila melanogaster when infected with four doses of the gram-negative bacterial pathogen Pseudomonas entomophila. We find that while flies unable to regulate the IMD response exhibited higher expression of antimicrobial peptides and lower bacterial loads as expected, this was not accompanied by a proportional reduction in mortality. Instead, ubiquitous UAS-RNAi knockdown of negative regulators of IMD (pirk and caudal) substantially increased the per-pathogen-mortality in both males and females across all tested infectious doses. Our results therefore highlight that in addition to regulating an efficient pathogen clearance response, negative regulators of IMD also contribute to disease tolerance.
期刊介绍:
Physiological Entomology broadly considers “how insects work” and how they are adapted to their environments at all levels from genes and molecules, anatomy and structure, to behaviour and interactions of whole organisms. We publish high quality experiment based papers reporting research on insects and other arthropods as well as occasional reviews. The journal thus has a focus on physiological and experimental approaches to understanding how insects function. The broad subject coverage of the Journal includes, but is not limited to:
-experimental analysis of behaviour-
behavioural physiology and biochemistry-
neurobiology and sensory physiology-
general physiology-
circadian rhythms and photoperiodism-
chemical ecology