Daniel Ehjeij, Jordan Kopping, Claus Gabriel, Josef R. Wünsch, Hans-Jörg Himmel, Rasmus R. Schröder, Manfred Wilhelm, Jan Freudenberg, Uwe H. F. Bunz, Klaus Müllen
{"title":"Electrochemical Exfoliation of Graphene and Formation of its Copolyamide 6/66 Nanocomposites by Wet Phase Inversion and Injection Molding","authors":"Daniel Ehjeij, Jordan Kopping, Claus Gabriel, Josef R. Wünsch, Hans-Jörg Himmel, Rasmus R. Schröder, Manfred Wilhelm, Jan Freudenberg, Uwe H. F. Bunz, Klaus Müllen","doi":"10.1002/macp.202400320","DOIUrl":null,"url":null,"abstract":"<p>Electrochemically exfoliated graphene (EEG) is compounded with copolyamide 6/66 (PA6/66) to investigate the influence of the carbonaceous filler material on the thermal, rheological, and mechanical properties of the composite. Toward that end, the environmentally friendly electrochemical exfoliation in aqueous solution is further developed to furnish graphene in large quantities. Separating the exfoliation process from the incorporation into the polymer matrix by wet phase inversion (WPI) allowed in-depth characterization of the EEG by scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy. The crystallinity of copolyamide 6/66-EEG is significantly changed, as revealed by differential scanning calorimetry (DSC). Likewise, the new composite materials exhibit different flow properties, as well as increased mechanical reinforcement with additive concentration. This is proven by dynamic shear rheology and three-point stress tests compared to the neat polymer.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202400320","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400320","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemically exfoliated graphene (EEG) is compounded with copolyamide 6/66 (PA6/66) to investigate the influence of the carbonaceous filler material on the thermal, rheological, and mechanical properties of the composite. Toward that end, the environmentally friendly electrochemical exfoliation in aqueous solution is further developed to furnish graphene in large quantities. Separating the exfoliation process from the incorporation into the polymer matrix by wet phase inversion (WPI) allowed in-depth characterization of the EEG by scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy. The crystallinity of copolyamide 6/66-EEG is significantly changed, as revealed by differential scanning calorimetry (DSC). Likewise, the new composite materials exhibit different flow properties, as well as increased mechanical reinforcement with additive concentration. This is proven by dynamic shear rheology and three-point stress tests compared to the neat polymer.
期刊介绍:
Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.