Analysis of Different Modality of Data to Diagnose Parkinson's Disease Using Machine Learning and Deep Learning Approaches: A Review

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Expert Systems Pub Date : 2024-11-18 DOI:10.1111/exsy.13790
Sheikh Bahauddin Arnab, Md Istakiak Adnan Palash, Rakibul Islam, Hemal Hossain Ovi, Mohammad Abu Yousuf, Md Zia Uddin
{"title":"Analysis of Different Modality of Data to Diagnose Parkinson's Disease Using Machine Learning and Deep Learning Approaches: A Review","authors":"Sheikh Bahauddin Arnab,&nbsp;Md Istakiak Adnan Palash,&nbsp;Rakibul Islam,&nbsp;Hemal Hossain Ovi,&nbsp;Mohammad Abu Yousuf,&nbsp;Md Zia Uddin","doi":"10.1111/exsy.13790","DOIUrl":null,"url":null,"abstract":"<p>The dynamic nature of Parkinson's disease (PD) is that it gradually impacts regions of the brain that are responsible for the production of the dopamine hormone. Despite continuous efforts, no effective treatment or preventative approach exists for PD. Nonetheless, the disease can be detected. Our goal is to create a Machine Learning and Deep Learning-based system that can detect Parkinson's disease from a variety of data sources with high accuracy, sensitivity, specificity and interpretability. However, there have been significant advancements in the field of research, especially the use of artificial intelligence in the Parkinson's disease diagnostic process. We reviewed articles that were released between 2018 and 2024, concentrating on the most current studies that had been published. We chose 70 research articles for our review paper based on a set of criteria from a variety of online databases, including IEEExpress, medical databases like PubMed, Google Scholar, ResearchGate and ScienceDirect, and various publishers, including Elsevier, Taylor &amp; Francis, Springer, MDPI, Plos One and so forth. According to our review, the majority of works make use of voice data. Our review study found that the highest accuracy level of most papers was above 90%, and the most commonly used algorithms were CNN and SVM. The main goal of this review study is to look into and put together information about the different ways that artificial intelligence, especially Machine Learning, can be used to find Parkinson's disease. Using diverse data gathered from multiple public and private datasets, we can infer that the application of artificial intelligence, particularly Machine Learning algorithms, for identifying Parkinson's disease plays a crucial role in the medical field.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.13790","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13790","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic nature of Parkinson's disease (PD) is that it gradually impacts regions of the brain that are responsible for the production of the dopamine hormone. Despite continuous efforts, no effective treatment or preventative approach exists for PD. Nonetheless, the disease can be detected. Our goal is to create a Machine Learning and Deep Learning-based system that can detect Parkinson's disease from a variety of data sources with high accuracy, sensitivity, specificity and interpretability. However, there have been significant advancements in the field of research, especially the use of artificial intelligence in the Parkinson's disease diagnostic process. We reviewed articles that were released between 2018 and 2024, concentrating on the most current studies that had been published. We chose 70 research articles for our review paper based on a set of criteria from a variety of online databases, including IEEExpress, medical databases like PubMed, Google Scholar, ResearchGate and ScienceDirect, and various publishers, including Elsevier, Taylor & Francis, Springer, MDPI, Plos One and so forth. According to our review, the majority of works make use of voice data. Our review study found that the highest accuracy level of most papers was above 90%, and the most commonly used algorithms were CNN and SVM. The main goal of this review study is to look into and put together information about the different ways that artificial intelligence, especially Machine Learning, can be used to find Parkinson's disease. Using diverse data gathered from multiple public and private datasets, we can infer that the application of artificial intelligence, particularly Machine Learning algorithms, for identifying Parkinson's disease plays a crucial role in the medical field.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems
Expert Systems 工程技术-计算机:理论方法
CiteScore
7.40
自引率
6.10%
发文量
266
审稿时长
24 months
期刊介绍: Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper. As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信