Xiaojiang Deng, Mingxuan Shen, Yu Zhao, Jing Bi, Chaolin Wang, Yongfa Zhang, Yang Li, Lin Ning, Kun Zheng
{"title":"Study on Mode I Fracture Characteristics and Fracture Surface Morphology of Concrete–Sandstone Under Different Loading Rates","authors":"Xiaojiang Deng, Mingxuan Shen, Yu Zhao, Jing Bi, Chaolin Wang, Yongfa Zhang, Yang Li, Lin Ning, Kun Zheng","doi":"10.1111/ffe.14543","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper studies the effect of various loading rates (0.02, 0.05, 0.5, and 1 mm/min) on the fracture characteristics of Mode I concrete–rock composites. Digital image correlation (DIC) and acoustic emission (AE) techniques are used to analyze cracked straight-through Brazilian discs (CSTBD). Significant changes in Shannon entropy were observed before fracture failure, suggesting it as a reliable precursor indicator. The study found that as loading rates increased, the time for CSTBD to undergo plastic deformation decreased, leading to more transgranular and intergranular fractures. Surface morphology analysis revealed that fractal dimensions and surface roughness (Rrms) increased with higher loading rates. A MATLAB program, using power spectral density (PSD) to evaluate the joint roughness coefficient (JRC), demonstrated greater efficiency and accuracy compared with traditional visual assessment methods. This highlights the PSD method's superior performance in determining JRC values.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 3","pages":"1183-1199"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14543","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the effect of various loading rates (0.02, 0.05, 0.5, and 1 mm/min) on the fracture characteristics of Mode I concrete–rock composites. Digital image correlation (DIC) and acoustic emission (AE) techniques are used to analyze cracked straight-through Brazilian discs (CSTBD). Significant changes in Shannon entropy were observed before fracture failure, suggesting it as a reliable precursor indicator. The study found that as loading rates increased, the time for CSTBD to undergo plastic deformation decreased, leading to more transgranular and intergranular fractures. Surface morphology analysis revealed that fractal dimensions and surface roughness (Rrms) increased with higher loading rates. A MATLAB program, using power spectral density (PSD) to evaluate the joint roughness coefficient (JRC), demonstrated greater efficiency and accuracy compared with traditional visual assessment methods. This highlights the PSD method's superior performance in determining JRC values.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.