Inversion of downhole resistivity properties through infrared spectroscopy and whole-rock geochemistry using machine-learning

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Mehdi Serdoun, Frédéric Sur, Gaétan Milesi, Elodie Williard, Pierre Martz, Julien Mercadier
{"title":"Inversion of downhole resistivity properties through infrared spectroscopy and whole-rock geochemistry using machine-learning","authors":"Mehdi Serdoun,&nbsp;Frédéric Sur,&nbsp;Gaétan Milesi,&nbsp;Elodie Williard,&nbsp;Pierre Martz,&nbsp;Julien Mercadier","doi":"10.1111/1365-2478.13627","DOIUrl":null,"url":null,"abstract":"<p>The electrical properties of rocks are widely used in the geophysical exploration of natural resources, such as minerals, hydrocarbons and groundwater. In mining exploration, the primary goal is to map electrically anomalous geological features associated with different mineralization styles, such as clay alteration haloes, metal oxides and sulphides, weathered crystalline rocks or fractured zones. As such, the reconciliation of geophysical data with geological information (geochemistry, mineralogy, texture and lithology) is a critical step and can be performed based on petrophysical properties collected either on core samples or as downhole measurements. Based on data from 189 diamond drill cores collected for uranium exploration in the Athabasca Basin (Saskatchewan, Canada), this paper presents a case study of reconciliation of downhole resistivity probing with core sample geochemistry and short-wave infrared spectroscopy (350–2500 nm) through three successive steps: (i) multivariate analysis of resistivity and other petrophysical properties (porosity, density) against geochemical and infrared spectroscopy information to characterize electrical properties of rocks with respect to other physical parameters, (ii) a machine-learning workflow integrating geochemistry and spectral signatures in order to infer synthetic resistivity logs along with uncertainties. The best model in the basin was Light Gradient-Boosting Machine with pairwise log-ratio, which yielded a coefficient of determination <i>R</i><sup>2</sup> = 0.80 (root mean square error = 0.16), and in the basement, support vector regression with data fusion of infrared spectroscopy and pairwise log-ratios on geochemistry yielded <i>R</i><sup>2</sup> = 0.82 (root mean square error = 0.35); (iii) the best model was then fitted on an area that was excluded from the original dataset (Getty Russell property) in order to infer synthetic resistivity logs for that zone. Software code is publicly available. This workflow can be re-used for the valorization of legacy datasets.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 1","pages":"355-379"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13627","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The electrical properties of rocks are widely used in the geophysical exploration of natural resources, such as minerals, hydrocarbons and groundwater. In mining exploration, the primary goal is to map electrically anomalous geological features associated with different mineralization styles, such as clay alteration haloes, metal oxides and sulphides, weathered crystalline rocks or fractured zones. As such, the reconciliation of geophysical data with geological information (geochemistry, mineralogy, texture and lithology) is a critical step and can be performed based on petrophysical properties collected either on core samples or as downhole measurements. Based on data from 189 diamond drill cores collected for uranium exploration in the Athabasca Basin (Saskatchewan, Canada), this paper presents a case study of reconciliation of downhole resistivity probing with core sample geochemistry and short-wave infrared spectroscopy (350–2500 nm) through three successive steps: (i) multivariate analysis of resistivity and other petrophysical properties (porosity, density) against geochemical and infrared spectroscopy information to characterize electrical properties of rocks with respect to other physical parameters, (ii) a machine-learning workflow integrating geochemistry and spectral signatures in order to infer synthetic resistivity logs along with uncertainties. The best model in the basin was Light Gradient-Boosting Machine with pairwise log-ratio, which yielded a coefficient of determination R2 = 0.80 (root mean square error = 0.16), and in the basement, support vector regression with data fusion of infrared spectroscopy and pairwise log-ratios on geochemistry yielded R2 = 0.82 (root mean square error = 0.35); (iii) the best model was then fitted on an area that was excluded from the original dataset (Getty Russell property) in order to infer synthetic resistivity logs for that zone. Software code is publicly available. This workflow can be re-used for the valorization of legacy datasets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信