Chengji Mi, Yingang Xiao, Yingjian Deng, Yongqiang Li
{"title":"Fatigue Life Prediction of LF6 Aluminum Alloy Laser-Arc Hybrid Welded Joints Based on Energy Dissipation Method","authors":"Chengji Mi, Yingang Xiao, Yingjian Deng, Yongqiang Li","doi":"10.1111/ffe.14517","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To accurately characterize the heat dissipation behavior of LF6 aluminum alloy laser arc composite welded joint under low cycle fatigue, two fatigue life prediction methods based on dissipated energy were proposed. The experimental investigation has revealed four stages in the evolution of surface temperature increment, including initial temperature increase, subsequent decline, attainment of thermal equilibrium, and sudden temperature escalation leading to failure. Based on the energy dissipation method, two models predicting lifespan of welded joints have been formulated. Model I incorporates the effects of stress amplitude and mean stress, on lifetime demonstrating a strong linear correlation particularly under high-stress level according to experimental comparisons. Model II introduces a relationship between plastic strain amplitude and inherent dissipated energy to assess fatigue life of welded joints. Digital imaging correction technique has been utilized to quantify plastic strain amplitude. The predicted results from Model II agree well with experimental data.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 2","pages":"814-826"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14517","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To accurately characterize the heat dissipation behavior of LF6 aluminum alloy laser arc composite welded joint under low cycle fatigue, two fatigue life prediction methods based on dissipated energy were proposed. The experimental investigation has revealed four stages in the evolution of surface temperature increment, including initial temperature increase, subsequent decline, attainment of thermal equilibrium, and sudden temperature escalation leading to failure. Based on the energy dissipation method, two models predicting lifespan of welded joints have been formulated. Model I incorporates the effects of stress amplitude and mean stress, on lifetime demonstrating a strong linear correlation particularly under high-stress level according to experimental comparisons. Model II introduces a relationship between plastic strain amplitude and inherent dissipated energy to assess fatigue life of welded joints. Digital imaging correction technique has been utilized to quantify plastic strain amplitude. The predicted results from Model II agree well with experimental data.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.