Advancing Software Project Effort Estimation: Leveraging a NIVIM for Enhanced Preprocessing

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Syed Sarmad Ali, Jian Ren, Ji Wu, Kui Zhang, Liu Chao
{"title":"Advancing Software Project Effort Estimation: Leveraging a NIVIM for Enhanced Preprocessing","authors":"Syed Sarmad Ali,&nbsp;Jian Ren,&nbsp;Ji Wu,&nbsp;Kui Zhang,&nbsp;Liu Chao","doi":"10.1002/smr.2745","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Software development effort estimation (SDEE) is essential for effective project planning and relies heavily on data quality affected by incomplete datasets. Missing data (MD) are a prevalent problem in machine learning, yet many models treat it arbitrarily despite its significance. Inadequate handling of MD may introduce bias into the induced knowledge. It can be challenging to choose optimal imputation approaches for software development projects. This article presents a <i>novel incomplete value imputation model (NIVIM)</i> that uses a variational autoencoder (VAE) for imputation and synthetic data. By combining contextual and resemblance components, our approach creates an SDEE dataset and improves the data quality using contextual imputation. The key feature of the proposed model is its applicability to a wide variety of datasets as a preprocessing unit. Comparative evaluations demonstrate that NIVIM outperforms existing models such as VAE, generative adversarial imputation network (GAIN), <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation>$$ k $$</annotation>\n </semantics></math>-nearest neighbor (K-NN), and multivariate imputation by chained equations (MICE). Our proposed model NIVIM produces statistically substantial improvements on six benchmark datasets, that is, ISBSG, Albrecht, COCOMO81, Desharnais, NASA, and UCP, with an average improvement in RMSE of <i>11.05%</i> to <i>17.72%</i> and MAE of <i>9.62%</i> to <i>21.96%</i>.</p>\n </div>","PeriodicalId":48898,"journal":{"name":"Journal of Software-Evolution and Process","volume":"37 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Software-Evolution and Process","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smr.2745","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Software development effort estimation (SDEE) is essential for effective project planning and relies heavily on data quality affected by incomplete datasets. Missing data (MD) are a prevalent problem in machine learning, yet many models treat it arbitrarily despite its significance. Inadequate handling of MD may introduce bias into the induced knowledge. It can be challenging to choose optimal imputation approaches for software development projects. This article presents a novel incomplete value imputation model (NIVIM) that uses a variational autoencoder (VAE) for imputation and synthetic data. By combining contextual and resemblance components, our approach creates an SDEE dataset and improves the data quality using contextual imputation. The key feature of the proposed model is its applicability to a wide variety of datasets as a preprocessing unit. Comparative evaluations demonstrate that NIVIM outperforms existing models such as VAE, generative adversarial imputation network (GAIN), k $$ k $$ -nearest neighbor (K-NN), and multivariate imputation by chained equations (MICE). Our proposed model NIVIM produces statistically substantial improvements on six benchmark datasets, that is, ISBSG, Albrecht, COCOMO81, Desharnais, NASA, and UCP, with an average improvement in RMSE of 11.05% to 17.72% and MAE of 9.62% to 21.96%.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Software-Evolution and Process
Journal of Software-Evolution and Process COMPUTER SCIENCE, SOFTWARE ENGINEERING-
自引率
10.00%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信