Development and Application of a New Convective Entrainment Rate Parameterization for Improving Precipitation Simulation Over the Tibetan Plateau and Its Surrounding Areas

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Junjun Li, Chunsong Lu, Jinghua Chen, Jian Li, Jing Yang, Xiaoqi Xu, Lei Zhu, Xin He, Shiying Wu
{"title":"Development and Application of a New Convective Entrainment Rate Parameterization for Improving Precipitation Simulation Over the Tibetan Plateau and Its Surrounding Areas","authors":"Junjun Li,&nbsp;Chunsong Lu,&nbsp;Jinghua Chen,&nbsp;Jian Li,&nbsp;Jing Yang,&nbsp;Xiaoqi Xu,&nbsp;Lei Zhu,&nbsp;Xin He,&nbsp;Shiying Wu","doi":"10.1029/2024MS004543","DOIUrl":null,"url":null,"abstract":"<p>The Tibetan Plateau (TP) significantly impacts the global climate. TP's unique geographical conditions make it one of the areas with the largest precipitation biases in numerical models. The overestimation and distribution biases of precipitation in models are closely related to the parameterization of convection processes over the TP. In light of this, a new deep convective entrainment rate parameterization suitable for the region is developed based on convection observational data and is applied to the Grell-Freitas Ensemble Scheme of the Weather Research and Forecasting Model. The new scheme significantly reduces the overestimation of simulated precipitation over the TP, decreasing the overestimation from 29.4% in the default scheme to 11.8%. The physical mechanism behind the improved simulation results is as follows: first, the entrainment rate of convection in the new scheme is closer to the observed results. Second, in terms of cloud macrophysics, the new scheme increases the convective entrainment rate, reduces the cloud top height and depth of convective clouds, and decreases the number of grids with updrafts in the vertical layers and grids with convective precipitation on the surface. Third, in terms of cloud microphysics, the increased entrainment rate reduces the cloud water content and weakens the intensity of convective precipitation. All of these mechanisms ultimately reduce the accumulated convective precipitation amount, providing an optimized modeling tool for weather and climate research over TP, which also aids in better assessing the water cycle and water resource reserves of the “Asian Water Tower.”</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004543","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004543","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Tibetan Plateau (TP) significantly impacts the global climate. TP's unique geographical conditions make it one of the areas with the largest precipitation biases in numerical models. The overestimation and distribution biases of precipitation in models are closely related to the parameterization of convection processes over the TP. In light of this, a new deep convective entrainment rate parameterization suitable for the region is developed based on convection observational data and is applied to the Grell-Freitas Ensemble Scheme of the Weather Research and Forecasting Model. The new scheme significantly reduces the overestimation of simulated precipitation over the TP, decreasing the overestimation from 29.4% in the default scheme to 11.8%. The physical mechanism behind the improved simulation results is as follows: first, the entrainment rate of convection in the new scheme is closer to the observed results. Second, in terms of cloud macrophysics, the new scheme increases the convective entrainment rate, reduces the cloud top height and depth of convective clouds, and decreases the number of grids with updrafts in the vertical layers and grids with convective precipitation on the surface. Third, in terms of cloud microphysics, the increased entrainment rate reduces the cloud water content and weakens the intensity of convective precipitation. All of these mechanisms ultimately reduce the accumulated convective precipitation amount, providing an optimized modeling tool for weather and climate research over TP, which also aids in better assessing the water cycle and water resource reserves of the “Asian Water Tower.”

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信