Mathematical Modeling of Tuberculosis Transmission Dynamics With Reinfection and Optimal Control

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Francis Oketch Ochieng
{"title":"Mathematical Modeling of Tuberculosis Transmission Dynamics With Reinfection and Optimal Control","authors":"Francis Oketch Ochieng","doi":"10.1002/eng2.13068","DOIUrl":null,"url":null,"abstract":"<p>Tuberculosis (TB) remains a significant global health challenge, claiming over 2 million lives annually, predominantly among adults. Existing TB models often neglect seasonal variations, optimal control, and reinfection, limiting their accuracy in predicting disease dynamics. This study presents a novel data-driven SVEITRS mathematical model incorporating these factors to analyze TB transmission dynamics. Employing the next-generation matrix approach, a basic reproduction number <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>R</mi>\n <mn>0</mn>\n </msub>\n </mfenced>\n </mrow>\n <annotation>$$ \\left({R}_0\\right) $$</annotation>\n </semantics></math> of 1.005341 was calculated, suggesting that without robust public health interventions, TB disease may persist in Kenya. The model equations were solved numerically using fourth- and fifth-order Runge–Kutta methods, with the forward–backward sweep technique applied to the optimal control problem. The model was fitted to historical TB incidence data for Kenya from 2000 to 2022 using lsqcurvefit algorithm in MATLAB software. The fitting algorithm yielded a mean absolute error (MAE) of 0.0069, demonstrating a close alignment between simulated and observed data. The optimized parameter values were used to project future TB dynamics. Key findings indicate that a 20% decrease in transmission rate coupled with a 5% increase in vaccine efficacy, while maintaining other parameters constant, would result in a 32.60% reduction in TB transmission in Kenya. Moreover, the incidence of TB in Kenya is expected to decrease to an estimated 17 cases per 100,000 people by 2045 with sustained efforts in vaccine development and public awareness campaigns. The development of highly efficacious vaccines emerges as the most cost-effective strategy in combating TB transmission in Kenya. Policymakers should prioritize investing in the development and deployment of highly efficacious vaccines to achieve optimal public health outcomes and economic benefits, aligning with Kenya's Vision 2030.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.13068","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.13068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Tuberculosis (TB) remains a significant global health challenge, claiming over 2 million lives annually, predominantly among adults. Existing TB models often neglect seasonal variations, optimal control, and reinfection, limiting their accuracy in predicting disease dynamics. This study presents a novel data-driven SVEITRS mathematical model incorporating these factors to analyze TB transmission dynamics. Employing the next-generation matrix approach, a basic reproduction number R 0 $$ \left({R}_0\right) $$ of 1.005341 was calculated, suggesting that without robust public health interventions, TB disease may persist in Kenya. The model equations were solved numerically using fourth- and fifth-order Runge–Kutta methods, with the forward–backward sweep technique applied to the optimal control problem. The model was fitted to historical TB incidence data for Kenya from 2000 to 2022 using lsqcurvefit algorithm in MATLAB software. The fitting algorithm yielded a mean absolute error (MAE) of 0.0069, demonstrating a close alignment between simulated and observed data. The optimized parameter values were used to project future TB dynamics. Key findings indicate that a 20% decrease in transmission rate coupled with a 5% increase in vaccine efficacy, while maintaining other parameters constant, would result in a 32.60% reduction in TB transmission in Kenya. Moreover, the incidence of TB in Kenya is expected to decrease to an estimated 17 cases per 100,000 people by 2045 with sustained efforts in vaccine development and public awareness campaigns. The development of highly efficacious vaccines emerges as the most cost-effective strategy in combating TB transmission in Kenya. Policymakers should prioritize investing in the development and deployment of highly efficacious vaccines to achieve optimal public health outcomes and economic benefits, aligning with Kenya's Vision 2030.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信