{"title":"A Signal-On Photoelectrochemical Immunosensor Based On Bi2MoO6 Nanosheets for Carcinoembryonic Antigen Analysis","authors":"Yue Chen, Bin Li, Lilin Ge, Fan Cai, Yao Lin","doi":"10.1002/elan.202400357","DOIUrl":null,"url":null,"abstract":"<p>Herein, a Bi<sub>2</sub>MoO<sub>6</sub> nanosheet (BMONS)-based sensing platform for signal-on photoelectrochemical (PEC) detection of carcinoembryonic antigen (CEA) is successfully constructed by employing an enzyme-catalyzed reaction as the signal amplification method. Specifically, as the CEA concentration escalates, a substantial accumulation of immunological complexes is triggered by the interaction between antigens and antibodies, which promptly concentrate glucose oxidase (GOD) within the wells of a 96-well microplate. These sequestered GOD molecules subsequently catalyze the hydrolysis of glucose to yield H<sub>2</sub>O<sub>2</sub>, an efficient hole scavenger, leading to significant amplification of the PEC response from the photosensitive materials. Under meticulously optimized conditions, a broad linear detection range spanning from 0.05 to 50 ng mL<sup>–1</sup> with a low limit of detection of 0.023 ng mL<sup>–1</sup> is realized for the detection of CEA. This exceptional performance underscores the successful implementation and efficacy of the BMONS-based PEC-sensing platform, which offers promising avenues for sensitive and selective biomarker detection.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"37 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elan.202400357","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, a Bi2MoO6 nanosheet (BMONS)-based sensing platform for signal-on photoelectrochemical (PEC) detection of carcinoembryonic antigen (CEA) is successfully constructed by employing an enzyme-catalyzed reaction as the signal amplification method. Specifically, as the CEA concentration escalates, a substantial accumulation of immunological complexes is triggered by the interaction between antigens and antibodies, which promptly concentrate glucose oxidase (GOD) within the wells of a 96-well microplate. These sequestered GOD molecules subsequently catalyze the hydrolysis of glucose to yield H2O2, an efficient hole scavenger, leading to significant amplification of the PEC response from the photosensitive materials. Under meticulously optimized conditions, a broad linear detection range spanning from 0.05 to 50 ng mL–1 with a low limit of detection of 0.023 ng mL–1 is realized for the detection of CEA. This exceptional performance underscores the successful implementation and efficacy of the BMONS-based PEC-sensing platform, which offers promising avenues for sensitive and selective biomarker detection.
期刊介绍:
Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications.
Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.