{"title":"Role of Loading Rate on Cracking Behavior in Granite Disks With Laboratory Experiments and Grain-Based Modeling","authors":"Yingming Yang, Ruide Lei, Qingheng Gu, Chao Hu, Linsen Zhou, Shirong Wei, Xuejia Li","doi":"10.1111/ffe.14515","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The investigation of the tensile properties of rock materials is essential for understanding the failure mechanism of engineering rock masses. In this study, we conducted a series of Brazilian splitting tests on granite specimens under three different loading rates, concurrently monitored using acoustic emission (AE) and digital image correlation (DIC) techniques. The results show that the mechanical parameters of granite disks are positively correlated with the loading rate. The AE waveforms are found to be associated with the lower frequency band, suggesting that this frequency range primarily dominates the failure mechanism in granite disks. Furthermore, the onset of micro-tensile fractures precedes the development of micro-shear ones. The elevation distribution of the fractured surfaces of the granite disks follows a Gaussian function. The fractal dimension increases progressively with the loading rate, whereas the complexity and irregularity of the fractured surface decrease. Moreover, the cracking mechanism of granite disks at the microscale was revealed using grain-based modeling (GBM). The intergranular tensile cracks predominantly form along the radial direction, and the proportion of intergranular shear cracks is the smallest.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 2","pages":"764-782"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14515","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation of the tensile properties of rock materials is essential for understanding the failure mechanism of engineering rock masses. In this study, we conducted a series of Brazilian splitting tests on granite specimens under three different loading rates, concurrently monitored using acoustic emission (AE) and digital image correlation (DIC) techniques. The results show that the mechanical parameters of granite disks are positively correlated with the loading rate. The AE waveforms are found to be associated with the lower frequency band, suggesting that this frequency range primarily dominates the failure mechanism in granite disks. Furthermore, the onset of micro-tensile fractures precedes the development of micro-shear ones. The elevation distribution of the fractured surfaces of the granite disks follows a Gaussian function. The fractal dimension increases progressively with the loading rate, whereas the complexity and irregularity of the fractured surface decrease. Moreover, the cracking mechanism of granite disks at the microscale was revealed using grain-based modeling (GBM). The intergranular tensile cracks predominantly form along the radial direction, and the proportion of intergranular shear cracks is the smallest.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.