Influence of the Loading Frequency on Very High Cycle Fatigue Behavior of Structural Steels

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
M. C. Teixeira, M. Awd, F. Walther, M. V. Pereira
{"title":"Influence of the Loading Frequency on Very High Cycle Fatigue Behavior of Structural Steels","authors":"M. C. Teixeira,&nbsp;M. Awd,&nbsp;F. Walther,&nbsp;M. V. Pereira","doi":"10.1111/ffe.14483","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In ultrasonic fatigue tests, the VHCF properties can be determined in a reasonable time. Nevertheless, the high frequency can affect the fatigue behavior for some materials. This study investigated the fatigue capability of 34CrNiMo6 and 42CrMo4 steels, both of which find widespread applications in several mechanical components. These steels were carried out for conventional and ultrasonic fatigue tests under fully reversed testing conditions. A microplasticity strain amplitude was calculated, indicating an order of magnitude decreases around 10–100, when compared with the experimental results from low-frequency tests. Cyclic strain rates were estimated for each steel and correlated with the number of cycles to failure. A conversion constant was obtained by fitting a curve to convert the high frequency results into theoretical results at low frequency. The experimental and predicted results were evaluated. The results proved the relevance of the strain rate in frequency effect. The converted results showed strong agreement with the experimental results in low-frequency tests for the steels being studied.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 2","pages":"751-763"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14483","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In ultrasonic fatigue tests, the VHCF properties can be determined in a reasonable time. Nevertheless, the high frequency can affect the fatigue behavior for some materials. This study investigated the fatigue capability of 34CrNiMo6 and 42CrMo4 steels, both of which find widespread applications in several mechanical components. These steels were carried out for conventional and ultrasonic fatigue tests under fully reversed testing conditions. A microplasticity strain amplitude was calculated, indicating an order of magnitude decreases around 10–100, when compared with the experimental results from low-frequency tests. Cyclic strain rates were estimated for each steel and correlated with the number of cycles to failure. A conversion constant was obtained by fitting a curve to convert the high frequency results into theoretical results at low frequency. The experimental and predicted results were evaluated. The results proved the relevance of the strain rate in frequency effect. The converted results showed strong agreement with the experimental results in low-frequency tests for the steels being studied.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信