Plasmon-Enhanced Optical Control of Magnetism at the Nanoscale via the Inverse Faraday Effect

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sergii Parchenko, Kevin Hofhuis, Agne Åberg Larsson, Vassilios Kapaklis, Valerio Scagnoli, Laura Jane Heyderman, Armin Kleibert
{"title":"Plasmon-Enhanced Optical Control of Magnetism at the Nanoscale via the Inverse Faraday Effect","authors":"Sergii Parchenko,&nbsp;Kevin Hofhuis,&nbsp;Agne Åberg Larsson,&nbsp;Vassilios Kapaklis,&nbsp;Valerio Scagnoli,&nbsp;Laura Jane Heyderman,&nbsp;Armin Kleibert","doi":"10.1002/adpr.202400083","DOIUrl":null,"url":null,"abstract":"<p>The relationship between magnetization and light has been the subject of intensive research for the past century. Herein, the impact of magnetization on light polarization is well understood. Conversely, the manipulation of magnetism with polarized light is being investigated to achieve all-optical control of magnetism, driven by potential technological implementation in spintronics. Remarkable discoveries, such as the single-pulse all-optical switching of magnetization in thin films and submicrometer structures, have been reported. However, the demonstration of local optical control of magnetism at the nanoscale has remained elusive. Herein, it is demonstrated that exciting gold nanodiscs with circularly polarized femtosecond laser pulses lead to ultrafast, local, and deterministic control of magnetization in an adjacent magnetic film. This control is achieved by exploiting the magnetic moment generated in plasmonic nanodiscs through the inverse Faraday effect. The results pave the way for light-driven control in nanoscale spintronic devices and provide important insights into the generation of magnetic fields in plasmonic nanostructures.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400083","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The relationship between magnetization and light has been the subject of intensive research for the past century. Herein, the impact of magnetization on light polarization is well understood. Conversely, the manipulation of magnetism with polarized light is being investigated to achieve all-optical control of magnetism, driven by potential technological implementation in spintronics. Remarkable discoveries, such as the single-pulse all-optical switching of magnetization in thin films and submicrometer structures, have been reported. However, the demonstration of local optical control of magnetism at the nanoscale has remained elusive. Herein, it is demonstrated that exciting gold nanodiscs with circularly polarized femtosecond laser pulses lead to ultrafast, local, and deterministic control of magnetization in an adjacent magnetic film. This control is achieved by exploiting the magnetic moment generated in plasmonic nanodiscs through the inverse Faraday effect. The results pave the way for light-driven control in nanoscale spintronic devices and provide important insights into the generation of magnetic fields in plasmonic nanostructures.

Abstract Image

通过反法拉第效应,等离子体增强的纳米级磁性光学控制
在过去的一个世纪里,磁化和光之间的关系一直是人们深入研究的课题。在这里,磁化对光偏振的影响是很好的理解。相反,由于自旋电子学中潜在的技术实现,人们正在研究用偏振光操纵磁性以实现磁性的全光控制。一些显著的发现,如薄膜和亚微米结构的单脉冲全光磁化开关,已经被报道。然而,在纳米尺度上实现磁的局部光学控制仍然是难以捉摸的。本文证明了用圆偏振飞秒激光脉冲激励金纳米片可以在邻近磁膜中实现超快、局部和确定性的磁化控制。这种控制是通过利用反法拉第效应在等离子体纳米盘中产生的磁矩来实现的。该结果为纳米级自旋电子器件的光驱动控制铺平了道路,并为等离子体纳米结构中磁场的产生提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信