Jing Gan, Qing Su, Linheng Li, Yanni Ju, Linchao Li
{"title":"Urban Traffic Accident Frequency Modeling: An Improved Spatial Matrix Construction Method","authors":"Jing Gan, Qing Su, Linheng Li, Yanni Ju, Linchao Li","doi":"10.1155/atr/1923889","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Spatial correlation is a critical factor in establishing accurate traffic accident analysis models, with the choice of measurement method significantly influencing the results. Despite the central role of roads as the primary conduit for traffic flow and a direct exposure variable in accidents, their impact on spatial correlation in accident analysis has not been fully explored. This study introduces an innovative spatial correlation matrix, termed the road matrix, which incorporates shared road lengths between grids to enhance accident prediction accuracy. The model examines the relationship between traffic accidents and various predictor variables, including land use, road networks, and public transportation facilities. Compared to traditional spatial correlation methods such as the rook and queen matrices, the road matrix provides a more precise characterization of spatial dependencies and significantly improves accident frequency estimation. Notably, the application of the road matrix within a conditional autoregressive (CAR) model uncovers additional significant contributors to traffic accidents, such as the number of interchanges and the length of nonexpress arterial roads. These findings offer new insights and practical recommendations for urban planning and traffic safety management. The study provides a valuable reference for future research on traffic accident frequencies and offers guidance for the design of more effective traffic safety measures.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/1923889","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/1923889","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial correlation is a critical factor in establishing accurate traffic accident analysis models, with the choice of measurement method significantly influencing the results. Despite the central role of roads as the primary conduit for traffic flow and a direct exposure variable in accidents, their impact on spatial correlation in accident analysis has not been fully explored. This study introduces an innovative spatial correlation matrix, termed the road matrix, which incorporates shared road lengths between grids to enhance accident prediction accuracy. The model examines the relationship between traffic accidents and various predictor variables, including land use, road networks, and public transportation facilities. Compared to traditional spatial correlation methods such as the rook and queen matrices, the road matrix provides a more precise characterization of spatial dependencies and significantly improves accident frequency estimation. Notably, the application of the road matrix within a conditional autoregressive (CAR) model uncovers additional significant contributors to traffic accidents, such as the number of interchanges and the length of nonexpress arterial roads. These findings offer new insights and practical recommendations for urban planning and traffic safety management. The study provides a valuable reference for future research on traffic accident frequencies and offers guidance for the design of more effective traffic safety measures.
期刊介绍:
The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport.
It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest.
Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.