Chemical Weathering and Physical Erosion Fluxes From Serpentinite in Puerto Rico

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Angus K. Moore, Kimberly Méndez Méndez, K. Stephen Hughes, Darryl E. Granger
{"title":"Chemical Weathering and Physical Erosion Fluxes From Serpentinite in Puerto Rico","authors":"Angus K. Moore,&nbsp;Kimberly Méndez Méndez,&nbsp;K. Stephen Hughes,&nbsp;Darryl E. Granger","doi":"10.1029/2024JF007776","DOIUrl":null,"url":null,"abstract":"<p>Weathering of ultramafic rocks emplaced at low latitude during arc-arc and arc-continent collisions may provide an important sink for atmospheric CO<sub>2</sub> over geologic timescales. Accurately modeling the effects of ultramafic rock weathering on Earth's carbon cycle and climate requires understanding mass fluxes from ultramafic landscapes. In this study, physical erosion and chemical weathering fluxes and weathering intensity are quantified in 15 watersheds across the Monte del Estado, a serpentinite massif in Puerto Rico, using measurements of in situ <sup>36</sup>Cl in magnetite, stream solute fluxes, and sediment geochemistry. Despite high relief in the study watersheds, erosion fluxes are moderate (22–109 tons km<sup>−2</sup> yr<sup>−1</sup>), chemical weathering fluxes are large (55–143 tons km<sup>−2</sup> yr<sup>−1</sup>), and weathering intensities are among the highest yet reported for silicate-rock weathering (up to 0.88). We use these data to parameterize power-law relationships between weathering, erosion, and runoff. We interpret the relative importance of climate versus erosion in setting weathering fluxes and CO<sub>2</sub> consumption from the best-fit power-law slopes. Weathering fluxes from tropical, montane serpentinite landscapes are found to be strongly controlled by runoff and weakly controlled by the supply of fresh rock to the weathering zone through physical erosion. The strong runoff dependence of weathering fluxes implies that, to the extent that precipitation rates are coupled to global temperature, ultramafic landscapes may be important participants in the negative silicate weathering feedback, increasing (decreasing) CO<sub>2</sub> consumption in response to a warming (cooling) climate. Thus, serpentinite landscapes may help stabilize Earth's climate state through time.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007776","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007776","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Weathering of ultramafic rocks emplaced at low latitude during arc-arc and arc-continent collisions may provide an important sink for atmospheric CO2 over geologic timescales. Accurately modeling the effects of ultramafic rock weathering on Earth's carbon cycle and climate requires understanding mass fluxes from ultramafic landscapes. In this study, physical erosion and chemical weathering fluxes and weathering intensity are quantified in 15 watersheds across the Monte del Estado, a serpentinite massif in Puerto Rico, using measurements of in situ 36Cl in magnetite, stream solute fluxes, and sediment geochemistry. Despite high relief in the study watersheds, erosion fluxes are moderate (22–109 tons km−2 yr−1), chemical weathering fluxes are large (55–143 tons km−2 yr−1), and weathering intensities are among the highest yet reported for silicate-rock weathering (up to 0.88). We use these data to parameterize power-law relationships between weathering, erosion, and runoff. We interpret the relative importance of climate versus erosion in setting weathering fluxes and CO2 consumption from the best-fit power-law slopes. Weathering fluxes from tropical, montane serpentinite landscapes are found to be strongly controlled by runoff and weakly controlled by the supply of fresh rock to the weathering zone through physical erosion. The strong runoff dependence of weathering fluxes implies that, to the extent that precipitation rates are coupled to global temperature, ultramafic landscapes may be important participants in the negative silicate weathering feedback, increasing (decreasing) CO2 consumption in response to a warming (cooling) climate. Thus, serpentinite landscapes may help stabilize Earth's climate state through time.

Abstract Image

波多黎各蛇纹岩的化学风化和物理侵蚀通量
在弧-弧和弧-陆碰撞过程中,位于低纬度的超镁铁质岩石的风化作用可能在地质时间尺度上为大气CO2提供了一个重要的汇。准确模拟超镁铁质岩石风化对地球碳循环和气候的影响需要了解超镁铁质景观的质量通量。在这项研究中,通过测量磁铁矿中的原位36Cl、溪流溶质通量和沉积物地球化学,对波多黎各蛇纹岩地块Monte del Estado的15个流域的物理侵蚀、化学风化通量和风化强度进行了量化。尽管研究流域地形起伏较大,但侵蚀通量中等(22-109吨km−2 yr−1),化学风化通量较大(55-143吨km−2 yr−1),硅酸盐岩石风化强度最高(高达0.88)。我们使用这些数据来参数化风化、侵蚀和径流之间的幂律关系。我们解释了气候与侵蚀在设定最合适的幂律斜坡的风化通量和二氧化碳消耗方面的相对重要性。热带山地蛇纹岩景观的风化通量受径流的强烈控制,而受物理侵蚀向风化带提供新鲜岩石的微弱控制。风化通量对径流的强烈依赖意味着,在降水速率与全球温度耦合的程度上,超镁铁景观可能是负硅酸盐风化反馈的重要参与者,在气候变暖(变冷)的情况下增加(减少)二氧化碳消耗。因此,蛇纹岩景观可能有助于稳定地球的气候状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信