A simple method for improving generalizability in behavioral science: Scope Testing with AI-Generated Stimuli (STAGS)

Geoff Tomaino, Asaf Mazar, Ziv Carmon, Klaus Wertenbroch
{"title":"A simple method for improving generalizability in behavioral science: Scope Testing with AI-Generated Stimuli (STAGS)","authors":"Geoff Tomaino,&nbsp;Asaf Mazar,&nbsp;Ziv Carmon,&nbsp;Klaus Wertenbroch","doi":"10.1002/arcp.1101","DOIUrl":null,"url":null,"abstract":"<p>Behavioral research typically tests hypotheses in a limited set of researcher-selected contexts. This approach can reveal whether an effect <i>can</i> occur (possibility) but does not indicate whether it holds in other contexts (generalizability). We present Scope Testing with AI-Generated Stimuli (STAGS), a simple approach that uses Generative AI (GenAI) to test predictions across a range, or scope, of stimuli. By assessing whether a prediction holds across this range, STAGS sheds light on the generalizability of the effect. In addition, outsourcing stimulus generation to GenAI makes transparent the otherwise opaque process of stimulus selection, requiring researchers to articulate the scope of stimuli to which their hypothesis applies. We illustrate STAGS in an experiment, showing that specifying the population from which stimuli are sampled can help researchers understand the scope of the effect they are studying. We discuss the benefits and limitations of this approach and propose directions for future exploration.</p>","PeriodicalId":100328,"journal":{"name":"Consumer Psychology Review","volume":"8 1","pages":"87-97"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Consumer Psychology Review","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arcp.1101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Behavioral research typically tests hypotheses in a limited set of researcher-selected contexts. This approach can reveal whether an effect can occur (possibility) but does not indicate whether it holds in other contexts (generalizability). We present Scope Testing with AI-Generated Stimuli (STAGS), a simple approach that uses Generative AI (GenAI) to test predictions across a range, or scope, of stimuli. By assessing whether a prediction holds across this range, STAGS sheds light on the generalizability of the effect. In addition, outsourcing stimulus generation to GenAI makes transparent the otherwise opaque process of stimulus selection, requiring researchers to articulate the scope of stimuli to which their hypothesis applies. We illustrate STAGS in an experiment, showing that specifying the population from which stimuli are sampled can help researchers understand the scope of the effect they are studying. We discuss the benefits and limitations of this approach and propose directions for future exploration.

一种提高行为科学概括性的简单方法:使用人工智能生成的刺激进行范围测试(STAGS)
行为研究通常在研究人员选择的有限环境中检验假设。这种方法可以揭示一种效果是否会发生(可能性),但不能表明它是否适用于其他情况(概括性)。我们提出了使用人工智能生成的刺激进行范围测试(STAGS),这是一种使用生成式人工智能(GenAI)在刺激范围或范围内测试预测的简单方法。通过评估一个预测是否在这个范围内成立,STAGS揭示了效应的普遍性。此外,将刺激产生外包给GenAI使得原本不透明的刺激选择过程变得透明,这就要求研究人员清楚地说明他们的假设适用的刺激范围。我们在一个实验中说明了STAGS,表明指定从刺激中取样的人群可以帮助研究人员了解他们正在研究的影响范围。我们讨论了这种方法的优点和局限性,并提出了未来探索的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信