A property of the interleaving distance for sheaves

IF 0.8 3区 数学 Q2 MATHEMATICS
François Petit, Pierre Schapira, Lukas Waas
{"title":"A property of the interleaving distance for sheaves","authors":"François Petit,&nbsp;Pierre Schapira,&nbsp;Lukas Waas","doi":"10.1112/blms.13187","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> be a real analytic manifold endowed with a distance satisfying suitable properties and let <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>${\\bf k}$</annotation>\n </semantics></math> be a field. In [Petit and Schapira, Selecta Math. <b>29</b> (2023), no. 70, DOI 10.1007/s00029-023-00875-6], the authors construct a pseudo-distance on the derived category of sheaves of <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>${\\bf k}$</annotation>\n </semantics></math>-modules on <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, generalizing a previous construction of [Kashiwara and Schapira, J. Appl. Comput. Math. Topol. <b>2</b> (2018), 83–113]. We prove here that if the distance between two constructible sheaves with compact support (or more generally, constructible sheaves up to infinity) on <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is zero, then these two sheaves are isomorphic, answering a question of [Kashiwara and Schapira, J. Appl. Comput. Math. Topol. <b>2</b> (2018), 83–113]. We also prove that our results imply a similar statement for finitely presentable persistence modules due to Lesnick.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"137-149"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13187","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13187","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X $X$ be a real analytic manifold endowed with a distance satisfying suitable properties and let k ${\bf k}$ be a field. In [Petit and Schapira, Selecta Math. 29 (2023), no. 70, DOI 10.1007/s00029-023-00875-6], the authors construct a pseudo-distance on the derived category of sheaves of k ${\bf k}$ -modules on X $X$ , generalizing a previous construction of [Kashiwara and Schapira, J. Appl. Comput. Math. Topol. 2 (2018), 83–113]. We prove here that if the distance between two constructible sheaves with compact support (or more generally, constructible sheaves up to infinity) on X $X$ is zero, then these two sheaves are isomorphic, answering a question of [Kashiwara and Schapira, J. Appl. Comput. Math. Topol. 2 (2018), 83–113]. We also prove that our results imply a similar statement for finitely presentable persistence modules due to Lesnick.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信