{"title":"Recent insights into the transformative role of Graphene-based/TiO2 electron transport layers for perovskite solar cells","authors":"T. Sewela, R. O. Ocaya, T. D. Malevu","doi":"10.1002/ese3.1878","DOIUrl":null,"url":null,"abstract":"<p>Perovskite solar cells (PSCs) hold great promise for cost-effective and high-efficiency solar energy conversion. However, in practice, they face practical limitations due to suboptimal electron transport, inadequate hole-suppression, photocatalytic instability, and susceptibility to other environmental factors. Many transition metal oxides such as ZnO and TiO<sub>2</sub> have important excitonic properties that make them good electron transport layer (ETL) materials in PSCs. However, many of the PS limitations arise from inherent issues with these oxides. The high interest in TiO<sub>2</sub> is due to its low toxicity, chemical stability, and the potential to enhance its excitonic performance through doping with many materials. The main limitations of TiO<sub>2</sub> are its poor visible-light response by virtue of its wide bandgap of ~3.2 eV, and its high electron-hole (e-h) recombination rates, which are directly responsible for its low current densities. Transition metal oxide enhancements occur using either internal doping or surface sensitization. Of the added materials, graphene has exceptional electrical conductivity, high electron mobility, large surface area, and excellent mechanical properties, making it a near-ideal candidate to improve the performance of TiO<sub>2</sub>. This review examines the important advances in graphene-TiO<sub>2</sub> (g-TiO<sub>2</sub>) composites for ETL application. By forming a composite with TiO<sub>2</sub>, graphene can significantly enhance electron transport, reduce recombination losses, and improve the overall stability of PSCs. We present the detailed rationale for and analysis of g-TiO<sub>2</sub> for improved electron transport efficiency, enhanced stability, and boosted overall PSC performance with the objective of providing an authoritative resource for the field.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 1","pages":"4-26"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1878","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1878","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells (PSCs) hold great promise for cost-effective and high-efficiency solar energy conversion. However, in practice, they face practical limitations due to suboptimal electron transport, inadequate hole-suppression, photocatalytic instability, and susceptibility to other environmental factors. Many transition metal oxides such as ZnO and TiO2 have important excitonic properties that make them good electron transport layer (ETL) materials in PSCs. However, many of the PS limitations arise from inherent issues with these oxides. The high interest in TiO2 is due to its low toxicity, chemical stability, and the potential to enhance its excitonic performance through doping with many materials. The main limitations of TiO2 are its poor visible-light response by virtue of its wide bandgap of ~3.2 eV, and its high electron-hole (e-h) recombination rates, which are directly responsible for its low current densities. Transition metal oxide enhancements occur using either internal doping or surface sensitization. Of the added materials, graphene has exceptional electrical conductivity, high electron mobility, large surface area, and excellent mechanical properties, making it a near-ideal candidate to improve the performance of TiO2. This review examines the important advances in graphene-TiO2 (g-TiO2) composites for ETL application. By forming a composite with TiO2, graphene can significantly enhance electron transport, reduce recombination losses, and improve the overall stability of PSCs. We present the detailed rationale for and analysis of g-TiO2 for improved electron transport efficiency, enhanced stability, and boosted overall PSC performance with the objective of providing an authoritative resource for the field.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.