Reliable modelling of the sulphur properties to calculate the process parameters of the Claus sulphur recovery plant

IF 1.6 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Mohammad M. Ghiasi, Sohrab Zendehboudi, Amir H. Mohammadi, Mahdi Nikkhahi, Ali Lohi, Ioannis Chatzis
{"title":"Reliable modelling of the sulphur properties to calculate the process parameters of the Claus sulphur recovery plant","authors":"Mohammad M. Ghiasi,&nbsp;Sohrab Zendehboudi,&nbsp;Amir H. Mohammadi,&nbsp;Mahdi Nikkhahi,&nbsp;Ali Lohi,&nbsp;Ioannis Chatzis","doi":"10.1002/cjce.25573","DOIUrl":null,"url":null,"abstract":"<p>In order to handle the overwhelming effects of the removed hydrogen sulphide (H<sub>2</sub>S) from natural gas and industrial waste gases on the environment, H<sub>2</sub>S can be converted to elemental sulphur. Among the available processes for sulphur recovery, the most widely employed process is a modified Claus process. In this work, first, least square version of support vector machine (LS-SVM) approach is utilized for determining the properties of sulphur including heat of vaporization, heat of condensation (<i>S</i><sub>6</sub>, <i>S</i><sub>8</sub>), heat of dissociation (<i>S</i><sub>6</sub>, <i>S</i><sub>8</sub>), and heat capacity of equilibrium sulphur vapours as a function of temperature. An illustrative example is given to show the usefulness of the presented computer-based models with two parameters for designing and operation of the Claus sulphur recovery unit (SRU). According to the error analysis results, predicted values by the proposed intelligent models are in excellent agreement with the reported data in the literature for the aforementioned sulphur properties where the coefficient of determination (<i>R</i><sup>2</sup>) is higher than 0.99 for all developed models. The average absolute relative deviation percent (%AARD) is less than 1.3 while predicting the heat capacity of equilibrium sulphur vapours. Other proposed models' predictions show less than 0.2% AARD from the target values. In addition, a mathematical algorithm on the basis of the Leverage approach is proposed to define the domain of applicability of the developed LS-SVM models. It was found that the presented models are statistically valid and the employed data points for developing the models are within the range of their applicability.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 3","pages":"986-1003"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25573","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to handle the overwhelming effects of the removed hydrogen sulphide (H2S) from natural gas and industrial waste gases on the environment, H2S can be converted to elemental sulphur. Among the available processes for sulphur recovery, the most widely employed process is a modified Claus process. In this work, first, least square version of support vector machine (LS-SVM) approach is utilized for determining the properties of sulphur including heat of vaporization, heat of condensation (S6, S8), heat of dissociation (S6, S8), and heat capacity of equilibrium sulphur vapours as a function of temperature. An illustrative example is given to show the usefulness of the presented computer-based models with two parameters for designing and operation of the Claus sulphur recovery unit (SRU). According to the error analysis results, predicted values by the proposed intelligent models are in excellent agreement with the reported data in the literature for the aforementioned sulphur properties where the coefficient of determination (R2) is higher than 0.99 for all developed models. The average absolute relative deviation percent (%AARD) is less than 1.3 while predicting the heat capacity of equilibrium sulphur vapours. Other proposed models' predictions show less than 0.2% AARD from the target values. In addition, a mathematical algorithm on the basis of the Leverage approach is proposed to define the domain of applicability of the developed LS-SVM models. It was found that the presented models are statistically valid and the employed data points for developing the models are within the range of their applicability.

用可靠的硫磺性质模型计算克劳斯硫磺回收装置的工艺参数
为了处理从天然气和工业废气中去除的硫化氢(H2S)对环境的压倒性影响,H2S可以转化为单质硫。在现有的硫磺回收工艺中,应用最广泛的是克劳斯法。在这项工作中,首先,最小二乘版本的支持向量机(LS-SVM)方法被用于确定硫的性质,包括蒸发热,冷凝热(S6, S8),解离热(S6, S8),以及平衡硫蒸汽的热容量作为温度的函数。算例表明,所建立的含两个参数的计算机模型对克劳斯硫回收装置(SRU)的设计和运行是有用的。误差分析结果表明,所建智能模型对上述硫性质的预测值与文献报道数据吻合良好,所有模型的决定系数(R2)均大于0.99。在预测平衡态硫蒸汽的热容时,平均绝对相对偏差百分数(%AARD)小于1.3。其他提出的模型预测显示,与目标值的偏差小于0.2%。此外,提出了一种基于杠杆方法的数学算法来定义LS-SVM模型的适用范围。结果表明,所建立的模型在统计上是有效的,所采用的数据点在其适用范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Canadian Journal of Chemical Engineering
Canadian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
3.60
自引率
14.30%
发文量
448
审稿时长
3.2 months
期刊介绍: The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信