{"title":"Prediction of Heavy Oil Production Based on Geomechanical Analysis in Entire Lifecycle of SAGD","authors":"Dengke Li, Shaowen Zhu, Yanchao Li, Shijie Shen, Zupeng Chen, Zhanli Ren, Yuxuan Zhou, Yanfang Gao","doi":"10.1002/ese3.2005","DOIUrl":null,"url":null,"abstract":"<p>Steam-assisted gravity drainage (SAGD) technology is an essential means of efficient development of heavy oil, super heavy oil, oil sands, and other unconventional resources in the world. Accurate prediction and evaluation of heavy oil output during SAGD production is a key step of construction optimization design and economic evaluation. The traditional prediction model of heavy oil production does not fully consider many geomechanical factors, such as rock deformation and permeability dynamic evolution. In this paper, a new mathematical model of crude oil production-geomechanical coupling was established for three stages of the SAGD life cycle (steam chamber breakthrough stage, rising stage, and lateral dilation stage). The influence of the dynamic evolution of rock porosity and permeability on production was fully considered through the sensitivity coefficient of rock strain and permeability stress. It is found that the gap between the new model and the traditional model is larger when the strain and stress sensitivity of the reservoir body is larger. The value calculated by the conventional model is small when the reservoir dilates and large when the reservoir compresses. For Karamay heavy oil in Xinjiang, China, the steam breakout time predicted by the new model is 0.72, 1.50, 1.37, and 1.44 times the conventional model when the volumetric strain is 6%. The heavy oil production of Karamay, Xinjiang, China, Athabasca, and Cold Lake SAGD production areas in Canada was predicted. In the lateral dilation stage of the steam chamber, the predicted values of the model considering geomechanical factors were 1.44, 1.28, and 1.15 times the traditional model, respectively. This model can help field engineers obtain more accurate production of heavy oil and evaluate the significance of reservoir geomechanics in SAGD production.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 1","pages":"344-354"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2005","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Steam-assisted gravity drainage (SAGD) technology is an essential means of efficient development of heavy oil, super heavy oil, oil sands, and other unconventional resources in the world. Accurate prediction and evaluation of heavy oil output during SAGD production is a key step of construction optimization design and economic evaluation. The traditional prediction model of heavy oil production does not fully consider many geomechanical factors, such as rock deformation and permeability dynamic evolution. In this paper, a new mathematical model of crude oil production-geomechanical coupling was established for three stages of the SAGD life cycle (steam chamber breakthrough stage, rising stage, and lateral dilation stage). The influence of the dynamic evolution of rock porosity and permeability on production was fully considered through the sensitivity coefficient of rock strain and permeability stress. It is found that the gap between the new model and the traditional model is larger when the strain and stress sensitivity of the reservoir body is larger. The value calculated by the conventional model is small when the reservoir dilates and large when the reservoir compresses. For Karamay heavy oil in Xinjiang, China, the steam breakout time predicted by the new model is 0.72, 1.50, 1.37, and 1.44 times the conventional model when the volumetric strain is 6%. The heavy oil production of Karamay, Xinjiang, China, Athabasca, and Cold Lake SAGD production areas in Canada was predicted. In the lateral dilation stage of the steam chamber, the predicted values of the model considering geomechanical factors were 1.44, 1.28, and 1.15 times the traditional model, respectively. This model can help field engineers obtain more accurate production of heavy oil and evaluate the significance of reservoir geomechanics in SAGD production.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.