Monotone versus non-monotone projective operators

IF 0.8 3区 数学 Q2 MATHEMATICS
J. P. Aguilera, P. D. Welch
{"title":"Monotone versus non-monotone projective operators","authors":"J. P. Aguilera,&nbsp;P. D. Welch","doi":"10.1112/blms.13194","DOIUrl":null,"url":null,"abstract":"<p>For a class of operators <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>Γ</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|\\Gamma |$</annotation>\n </semantics></math> denote the closure ordinal of <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>-inductive definitions. We give upper bounds on the values of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n </mrow>\n <msubsup>\n <mi>Σ</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n <mi>o</mi>\n <mi>n</mi>\n </mrow>\n </msubsup>\n <mrow>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$|\\Sigma ^{1,mon}_{2n+1}|$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n </mrow>\n <msubsup>\n <mi>Π</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n <mi>o</mi>\n <mi>n</mi>\n </mrow>\n </msubsup>\n <mrow>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$|\\Pi ^{1,mon}_{2n+2}|$</annotation>\n </semantics></math> under the assumption that all projective sets of reals are determined, significantly improving the known results. In particular, the bounds show that <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n </mrow>\n <msubsup>\n <mi>Π</mi>\n <mi>n</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n <mi>o</mi>\n <mi>n</mi>\n </mrow>\n </msubsup>\n <mrow>\n <mo>|</mo>\n <mo>&lt;</mo>\n <mo>|</mo>\n </mrow>\n <msubsup>\n <mi>Π</mi>\n <mi>n</mi>\n <mn>1</mn>\n </msubsup>\n <mrow>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$|\\Pi ^{1,mon}_{n}| &lt; |\\Pi ^1_{n}|$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n </mrow>\n <msubsup>\n <mi>Σ</mi>\n <mi>n</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n <mi>o</mi>\n <mi>n</mi>\n </mrow>\n </msubsup>\n <mrow>\n <mo>|</mo>\n <mo>&lt;</mo>\n <mo>|</mo>\n </mrow>\n <msubsup>\n <mi>Σ</mi>\n <mi>n</mi>\n <mn>1</mn>\n </msubsup>\n <mrow>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$|\\Sigma ^{1,mon}_{n}| &lt; |\\Sigma ^1_{n}|$</annotation>\n </semantics></math> hold for <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>⩽</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$2\\leqslant n$</annotation>\n </semantics></math> under the assumption of projective determinacy. Some of these inequalities were obtained by Aanderaa in the 70s via recursion-theoretic methods but never appeared in print. Our proofs are model-theoretic.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"256-264"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13194","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13194","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a class of operators Γ $\Gamma$ , let | Γ | $|\Gamma |$ denote the closure ordinal of Γ $\Gamma$ -inductive definitions. We give upper bounds on the values of | Σ 2 n + 1 1 , m o n | $|\Sigma ^{1,mon}_{2n+1}|$ and | Π 2 n + 2 1 , m o n | $|\Pi ^{1,mon}_{2n+2}|$ under the assumption that all projective sets of reals are determined, significantly improving the known results. In particular, the bounds show that | Π n 1 , m o n | < | Π n 1 | $|\Pi ^{1,mon}_{n}| < |\Pi ^1_{n}|$ and | Σ n 1 , m o n | < | Σ n 1 | $|\Sigma ^{1,mon}_{n}| < |\Sigma ^1_{n}|$ hold for 2 n $2\leqslant n$ under the assumption of projective determinacy. Some of these inequalities were obtained by Aanderaa in the 70s via recursion-theoretic methods but never appeared in print. Our proofs are model-theoretic.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信