The integral role of high-entropy alloys in advancing solid-state hydrogen storage

IF 24.5 Q1 CHEMISTRY, PHYSICAL
Zhao Ding, Yuting Li, Han Jiang, Yang Zhou, Haiyi Wan, Junqi Qiu, Fangning Jiang, Jun Tan, Wenjia Du, Yu'an Chen, Leon L. Shaw, Fusheng Pan
{"title":"The integral role of high-entropy alloys in advancing solid-state hydrogen storage","authors":"Zhao Ding,&nbsp;Yuting Li,&nbsp;Han Jiang,&nbsp;Yang Zhou,&nbsp;Haiyi Wan,&nbsp;Junqi Qiu,&nbsp;Fangning Jiang,&nbsp;Jun Tan,&nbsp;Wenjia Du,&nbsp;Yu'an Chen,&nbsp;Leon L. Shaw,&nbsp;Fusheng Pan","doi":"10.1002/idm2.12216","DOIUrl":null,"url":null,"abstract":"<p>High-entropy alloys (HEAs) have emerged as a groundbreaking class of materials poised to revolutionize solid-state hydrogen storage technology. This comprehensive review delves into the intricate interplay between the unique compositional and structural attributes of HEAs and their remarkable hydrogen storage performance. By meticulously exploring the design strategies and synthesis techniques, encompassing experimental procedures, thermodynamic calculations, and machine learning approaches, this work illuminates the vast potential of HEAs in surmounting the challenges faced by conventional hydrogen storage materials. The review underscores the pivotal role of HEAs' diverse elemental landscape and phase dynamics in tailoring their hydrogen storage properties. It elucidates the complex mechanisms governing hydrogen absorption, diffusion, and desorption within these novel alloys, offering insights into enhancing their reversibility, cycling stability, and safety characteristics. Moreover, it highlights the transformative impact of advanced characterization techniques and computational modeling in unraveling the structure–property relationships and guiding the rational design of high-performance HEAs for hydrogen storage applications. By bridging the gap between fundamental science and practical implementation, this review sets the stage for the development of next-generation solid-state hydrogen storage solutions. It identifies key research directions and strategies to accelerate the deployment of HEAs in hydrogen storage systems, including the optimization of synthesis routes, the integration of multiscale characterization, and the harnessing of data-driven approaches. Ultimately, this comprehensive analysis serves as a roadmap for the scientific community, paving the way for the widespread adoption of HEAs as a disruptive technology in the pursuit of sustainable and efficient hydrogen storage for a clean energy future.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 1","pages":"75-108"},"PeriodicalIF":24.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12216","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy alloys (HEAs) have emerged as a groundbreaking class of materials poised to revolutionize solid-state hydrogen storage technology. This comprehensive review delves into the intricate interplay between the unique compositional and structural attributes of HEAs and their remarkable hydrogen storage performance. By meticulously exploring the design strategies and synthesis techniques, encompassing experimental procedures, thermodynamic calculations, and machine learning approaches, this work illuminates the vast potential of HEAs in surmounting the challenges faced by conventional hydrogen storage materials. The review underscores the pivotal role of HEAs' diverse elemental landscape and phase dynamics in tailoring their hydrogen storage properties. It elucidates the complex mechanisms governing hydrogen absorption, diffusion, and desorption within these novel alloys, offering insights into enhancing their reversibility, cycling stability, and safety characteristics. Moreover, it highlights the transformative impact of advanced characterization techniques and computational modeling in unraveling the structure–property relationships and guiding the rational design of high-performance HEAs for hydrogen storage applications. By bridging the gap between fundamental science and practical implementation, this review sets the stage for the development of next-generation solid-state hydrogen storage solutions. It identifies key research directions and strategies to accelerate the deployment of HEAs in hydrogen storage systems, including the optimization of synthesis routes, the integration of multiscale characterization, and the harnessing of data-driven approaches. Ultimately, this comprehensive analysis serves as a roadmap for the scientific community, paving the way for the widespread adoption of HEAs as a disruptive technology in the pursuit of sustainable and efficient hydrogen storage for a clean energy future.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信