Seong Heon Kim, Muhammad Ajmal Khan, Kwang Seop Im, Pilgyu Kang, Sang Yong Nam
{"title":"Enhanced Organic Solvent Nanofiltration Membranes with Double Permeance via Laser-Induced Graphitization of Polybenzimidazole","authors":"Seong Heon Kim, Muhammad Ajmal Khan, Kwang Seop Im, Pilgyu Kang, Sang Yong Nam","doi":"10.1002/admi.202400490","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the fabrication of organic solvent nanofiltration (OSN) membranes through laser-induced graphitization of polybenzimidazole (PBI). Employing a CO2 laser, the polymer is converted into graphene, resulting in controlled submicron-scale porous 3D structures, a feat not achievable with traditional methods such as chemical crosslinking. The effectiveness of this process hinges on precise adjustments of laser parameters, such as fluence, to attain the ideal graphitization levels. The findings indicate that partial graphitization, as opposed to excessive, is crucial for preserving the membrane's microstructure and enhancing its functional properties. The partially graphitized PBI-LIG (Polybenzimidazole ‒ Laser-induced Graphene) membranes achieved up to 94% rejection of Congo red from ethanol, with an ethanol permeance rate of 12.14 LMH bar<sup>−1</sup>—nearly twice that of standard PBI membranes. Additionally, these membranes showcased outstanding chemical stability and solvent resistance, maintaining over 99% structural integrity and experiencing <1% weight loss after prolonged exposure to various industrial solvents over a week. These results highlight the potential of laser-graphitized PBI membranes for applications in harsh chemical conditions, paving the way for further optimization of high-performance OSN membranes. This research advances membrane technology, merging laser engineering with materials science, and contributes to environmental sustainability and industrial efficiency.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 35","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400490","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400490","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the fabrication of organic solvent nanofiltration (OSN) membranes through laser-induced graphitization of polybenzimidazole (PBI). Employing a CO2 laser, the polymer is converted into graphene, resulting in controlled submicron-scale porous 3D structures, a feat not achievable with traditional methods such as chemical crosslinking. The effectiveness of this process hinges on precise adjustments of laser parameters, such as fluence, to attain the ideal graphitization levels. The findings indicate that partial graphitization, as opposed to excessive, is crucial for preserving the membrane's microstructure and enhancing its functional properties. The partially graphitized PBI-LIG (Polybenzimidazole ‒ Laser-induced Graphene) membranes achieved up to 94% rejection of Congo red from ethanol, with an ethanol permeance rate of 12.14 LMH bar−1—nearly twice that of standard PBI membranes. Additionally, these membranes showcased outstanding chemical stability and solvent resistance, maintaining over 99% structural integrity and experiencing <1% weight loss after prolonged exposure to various industrial solvents over a week. These results highlight the potential of laser-graphitized PBI membranes for applications in harsh chemical conditions, paving the way for further optimization of high-performance OSN membranes. This research advances membrane technology, merging laser engineering with materials science, and contributes to environmental sustainability and industrial efficiency.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.