On the Use of Embedding Techniques for Modeling User Navigational Behavior in Intelligent Prefetching Strategies

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Tolga Buyuktanir, Mehmet S. Aktas
{"title":"On the Use of Embedding Techniques for Modeling User Navigational Behavior in Intelligent Prefetching Strategies","authors":"Tolga Buyuktanir,&nbsp;Mehmet S. Aktas","doi":"10.1002/cpe.8356","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In today's data-intensive client-server systems, traditional caching methods often fail to meet the demands of modern applications, especially in mobile environments with unstable network conditions. This research addresses the challenge of improving data delivery by proposing an advanced prefetching framework that utilizes various embedding techniques. We explore how to model user navigation using graph-based, autoencoder-based, and sequence-to-sequence-based embedding methods and assess their impact on prefetching accuracy and efficiency. Our study shows that utilizing these embedding techniques with supervised learning models improves prefetching performance. We also present a software architecture that blends supervised and unsupervised learning approaches, along with user-specific and collective learning models, to create a robust prefetching mechanism. The contributions of this study include developing a scalable prefetching solution using machine learning/deep learning algorithms and providing an open-source prototype of the proposed architecture. This paper offers a significant improvement over previous research and provides valuable insights for enhancing the performance of data-intensive applications.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8356","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In today's data-intensive client-server systems, traditional caching methods often fail to meet the demands of modern applications, especially in mobile environments with unstable network conditions. This research addresses the challenge of improving data delivery by proposing an advanced prefetching framework that utilizes various embedding techniques. We explore how to model user navigation using graph-based, autoencoder-based, and sequence-to-sequence-based embedding methods and assess their impact on prefetching accuracy and efficiency. Our study shows that utilizing these embedding techniques with supervised learning models improves prefetching performance. We also present a software architecture that blends supervised and unsupervised learning approaches, along with user-specific and collective learning models, to create a robust prefetching mechanism. The contributions of this study include developing a scalable prefetching solution using machine learning/deep learning algorithms and providing an open-source prototype of the proposed architecture. This paper offers a significant improvement over previous research and provides valuable insights for enhancing the performance of data-intensive applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信