Marcos Tostado-Véliz, Rohit Bhakar, Mohammad Sadegh Javadi, Ali Esmaeel Nezhad, Francisco Jurado
{"title":"Integrating the strategic response of parking lots in active distribution networks: An equilibrium approach","authors":"Marcos Tostado-Véliz, Rohit Bhakar, Mohammad Sadegh Javadi, Ali Esmaeel Nezhad, Francisco Jurado","doi":"10.1049/rpg2.13195","DOIUrl":null,"url":null,"abstract":"<p>The increasing penetration of electric vehicles will be accompanied for a wide deployment of charging infrastructures. Large charging demand brings formidable challenges to existing power networks, driving them near to their operational limits. In this regard, it becomes pivotal developing novel energy management strategies for active distribution networks that take into account the strategic behaviour of parking lots. This paper focuses on this issue, developing a novel energy management tool for distribution networks encompassing distributed generators and parking lots. The new proposal casts as a tri-level game equilibrium framework where the profit maximization of lots is implicitly considered, thus ensuring that network-level decisions do not detract the profit of parking owners. The original tri-level model is reduced into a tractable single-level mixed-integer-linear programming by combining equivalent primal-dual and first-order optimality conditions of the distribution network and parking operational models. This way, the model can be solved using off-the-shelf solvers, with superiority against other approaches like metaheuristics. The developed model is validated in well-known 33-, and 85-bus radial distribution systems. Results show that, even under unfavourable conditions with limited distributed generation, charging demand is maximized, thus preserving the interests of parking owners. Moreover, the model is further validated through a number of simulations, showing its effectiveness. Finally, it is demonstrated that the developed tool scales well with the size of the system, easing its implementation in real-life applications.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13195","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13195","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing penetration of electric vehicles will be accompanied for a wide deployment of charging infrastructures. Large charging demand brings formidable challenges to existing power networks, driving them near to their operational limits. In this regard, it becomes pivotal developing novel energy management strategies for active distribution networks that take into account the strategic behaviour of parking lots. This paper focuses on this issue, developing a novel energy management tool for distribution networks encompassing distributed generators and parking lots. The new proposal casts as a tri-level game equilibrium framework where the profit maximization of lots is implicitly considered, thus ensuring that network-level decisions do not detract the profit of parking owners. The original tri-level model is reduced into a tractable single-level mixed-integer-linear programming by combining equivalent primal-dual and first-order optimality conditions of the distribution network and parking operational models. This way, the model can be solved using off-the-shelf solvers, with superiority against other approaches like metaheuristics. The developed model is validated in well-known 33-, and 85-bus radial distribution systems. Results show that, even under unfavourable conditions with limited distributed generation, charging demand is maximized, thus preserving the interests of parking owners. Moreover, the model is further validated through a number of simulations, showing its effectiveness. Finally, it is demonstrated that the developed tool scales well with the size of the system, easing its implementation in real-life applications.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf