Polyaspartic Acid–Based Porous Carbon–Loaded Nickel Metal and Its Application to Hydrogen Adsorption

IF 3.7 2区 化学 Q2 CHEMISTRY, APPLIED
Mingqiu Lu, Huimin Zhu, Ling Liu, Meilin Jiang, Qiulan Shi, Jianbo Zhao
{"title":"Polyaspartic Acid–Based Porous Carbon–Loaded Nickel Metal and Its Application to Hydrogen Adsorption","authors":"Mingqiu Lu,&nbsp;Huimin Zhu,&nbsp;Ling Liu,&nbsp;Meilin Jiang,&nbsp;Qiulan Shi,&nbsp;Jianbo Zhao","doi":"10.1002/aoc.8005","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Hydrogen energy plays an important role as a clean, renewable resource in replacing traditional fossil energy sources, and in this study, a polyaspartic acid (PASP) porous carbon loaded with metallic nickel was prepared for hydrogen storage. The PASP porous carbon loaded with nickel metal was successfully prepared by high-temperature pyrolysis and metal-solution impregnation using homemade PASP hydrogels as raw material. Compared to ordinary carbon materials, the addition of K<sup>+</sup> as a porogenic agent to the material before carbon formation makes its pore structure rich and adjustable. In addition, nickel as an active site optimizes the overall electronic structure and surface properties of the material, which together increase the gas adsorption capacity. The materials of PASP, PASP porous carbon, and PASP porous carbon loaded with metallic nickel were also characterized by FTIR, SEM, BET, TEM, EDS, XRD, and XPS, and finally applied to hydrogen adsorption. The results show that C-PASP-50% has the best adsorption effect on hydrogen with different degrees of cross-linking, and the adsorption capacity can reach 126.49 cm<sup>3</sup>/g. The adsorption capacity increases significantly after loading metal nickel, and the adsorption capacity of C-PASP-Ni50% reaches 273.03 cm<sup>3</sup>/g.</p>\n </div>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"39 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.8005","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen energy plays an important role as a clean, renewable resource in replacing traditional fossil energy sources, and in this study, a polyaspartic acid (PASP) porous carbon loaded with metallic nickel was prepared for hydrogen storage. The PASP porous carbon loaded with nickel metal was successfully prepared by high-temperature pyrolysis and metal-solution impregnation using homemade PASP hydrogels as raw material. Compared to ordinary carbon materials, the addition of K+ as a porogenic agent to the material before carbon formation makes its pore structure rich and adjustable. In addition, nickel as an active site optimizes the overall electronic structure and surface properties of the material, which together increase the gas adsorption capacity. The materials of PASP, PASP porous carbon, and PASP porous carbon loaded with metallic nickel were also characterized by FTIR, SEM, BET, TEM, EDS, XRD, and XPS, and finally applied to hydrogen adsorption. The results show that C-PASP-50% has the best adsorption effect on hydrogen with different degrees of cross-linking, and the adsorption capacity can reach 126.49 cm3/g. The adsorption capacity increases significantly after loading metal nickel, and the adsorption capacity of C-PASP-Ni50% reaches 273.03 cm3/g.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Organometallic Chemistry
Applied Organometallic Chemistry 化学-无机化学与核化学
CiteScore
7.80
自引率
10.30%
发文量
408
审稿时长
2.2 months
期刊介绍: All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信