Permafrost and Structural Controls on Holocene Bedrock Landslide Occurrence Around Eyjafjörður, North-Central Iceland

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Adam M. Booth, Halldór G. Pétursson
{"title":"Permafrost and Structural Controls on Holocene Bedrock Landslide Occurrence Around Eyjafjörður, North-Central Iceland","authors":"Adam M. Booth,&nbsp;Halldór G. Pétursson","doi":"10.1029/2024JF007933","DOIUrl":null,"url":null,"abstract":"<p>Rapid, transient, landscape-scale changes associated with deglaciation can condition slopes for failure and trigger bedrock landslides. However, the mechanisms leading to paleo rock slope failures following the last glacial period are challenging to infer because observations of how both landsliding and potential driving factors were distributed in space and time are limited. Here, we map and analyze the spatiotemporal pattern of 676 post-glacial bedrock landslides around Eyjafjörður in north-central Iceland using 2-m resolution digital elevation data generated from optical stereo satellite imagery. Frequency-ratio analysis demonstrates that after controlling for slope, landslides are most overrepresented within 2.6 km horizontal distances from surface projections of major Tertiary bedrock structures and at land surface elevations within 300 m of a modeled lower limit to permafrost. Surface roughness analysis of landslide deposits indicates that peak landslide frequency of at least 0.2 landslides yr<sup>−1</sup> in the 5,579 km<sup>2</sup> study area lagged deglaciation by several thousand years. This timing aligns well with that of rapid permafrost degradation from the Younger Dryas (12.9–11.7 cal ky BP) through the Holocene Thermal Maximum (∼10–7 cal ky BP). Landslide frequency has averaged about 0.014 landslides yr<sup>−1</sup> since the Holocene Thermal Maximum when the climate has generally been cooler and permafrost has been more extensive. However, present day warming is likely to reduce permafrost extent and increase the potential for bedrock landslides in north-central Iceland, as has already been observed for several recent shallower landslides in regolith.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007933","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007933","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid, transient, landscape-scale changes associated with deglaciation can condition slopes for failure and trigger bedrock landslides. However, the mechanisms leading to paleo rock slope failures following the last glacial period are challenging to infer because observations of how both landsliding and potential driving factors were distributed in space and time are limited. Here, we map and analyze the spatiotemporal pattern of 676 post-glacial bedrock landslides around Eyjafjörður in north-central Iceland using 2-m resolution digital elevation data generated from optical stereo satellite imagery. Frequency-ratio analysis demonstrates that after controlling for slope, landslides are most overrepresented within 2.6 km horizontal distances from surface projections of major Tertiary bedrock structures and at land surface elevations within 300 m of a modeled lower limit to permafrost. Surface roughness analysis of landslide deposits indicates that peak landslide frequency of at least 0.2 landslides yr−1 in the 5,579 km2 study area lagged deglaciation by several thousand years. This timing aligns well with that of rapid permafrost degradation from the Younger Dryas (12.9–11.7 cal ky BP) through the Holocene Thermal Maximum (∼10–7 cal ky BP). Landslide frequency has averaged about 0.014 landslides yr−1 since the Holocene Thermal Maximum when the climate has generally been cooler and permafrost has been more extensive. However, present day warming is likely to reduce permafrost extent and increase the potential for bedrock landslides in north-central Iceland, as has already been observed for several recent shallower landslides in regolith.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信