Reinforcement Learning–Based Ramp Metering Strategy Considering Queue Management

IF 2 4区 工程技术 Q2 ENGINEERING, CIVIL
Yang Yang, Shixuan Yu, Fan Ding, Yu Han
{"title":"Reinforcement Learning–Based Ramp Metering Strategy Considering Queue Management","authors":"Yang Yang,&nbsp;Shixuan Yu,&nbsp;Fan Ding,&nbsp;Yu Han","doi":"10.1155/atr/2838943","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper introduces an action replacement module for reinforcement learning (RL)–based ramp metering to address the issue of ramp queue spillback during the training process. Ramp queue spillback leads to significant impacts on the traffic efficiency of adjacent road networks, making it a critical concern in ramp control. Existing RL approaches often employ ramp states as reward functions to encourage agents to learn strategies that avoid queue overflow. However, due to the trial-and-error nature of RL, these methods frequently generate actions that cause queue spillback during training, posing challenges for real-time online training in real-world applications. To overcome this limitation, the proposed action replacement module utilizes the store-and-forward model to estimate a lower bound for ramp metering rates. By identifying and replacing actions that fail to meet this constraint, the strategy effectively prevents queue spillback. In addition, penalties are imposed on replaced actions to guide the agent in learning effective and practical control policies. The proposed method is evaluated in both single-ramp and multiramp scenarios. Experimental results demonstrate that the agent can learn the queue spillback prevention strategies, and nearly eliminate ramp queue spillback without compromising control performance.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/2838943","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/2838943","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an action replacement module for reinforcement learning (RL)–based ramp metering to address the issue of ramp queue spillback during the training process. Ramp queue spillback leads to significant impacts on the traffic efficiency of adjacent road networks, making it a critical concern in ramp control. Existing RL approaches often employ ramp states as reward functions to encourage agents to learn strategies that avoid queue overflow. However, due to the trial-and-error nature of RL, these methods frequently generate actions that cause queue spillback during training, posing challenges for real-time online training in real-world applications. To overcome this limitation, the proposed action replacement module utilizes the store-and-forward model to estimate a lower bound for ramp metering rates. By identifying and replacing actions that fail to meet this constraint, the strategy effectively prevents queue spillback. In addition, penalties are imposed on replaced actions to guide the agent in learning effective and practical control policies. The proposed method is evaluated in both single-ramp and multiramp scenarios. Experimental results demonstrate that the agent can learn the queue spillback prevention strategies, and nearly eliminate ramp queue spillback without compromising control performance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Transportation
Journal of Advanced Transportation 工程技术-工程:土木
CiteScore
5.00
自引率
8.70%
发文量
466
审稿时长
7.3 months
期刊介绍: The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport. It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest. Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信