{"title":"A novel noncommunication-based inductive power transfer control technique for battery charging application","authors":"Guocun Li, Xuewei Pan, Danyang Bao, Zhouchi Cai, Avneet Kumar","doi":"10.1049/pel2.12837","DOIUrl":null,"url":null,"abstract":"<p>In order to realize the precise control of the output voltage and current of the inductive power transfer (IPT) battery charging system, wireless communication-based control are generally employed in a lot of existing works. However, the stability of the IPT converter will be impaired if communication fails. This paper proposes a novel noncommunication-based control strategy with a simple switched controlled capacitor design at the receiver side of the IPT system. A series-inductor–capacitor–capacitor compensation network is selected to verify the proposed control strategy. Without feedback wireless communication, the proposed IPT system can realize reliable constant current and constant voltage output control over full load range at a fixed switching frequency. At the receiver side, switched controlled capacitor is introduced to control reactive current and convey the output-side information to the transmitter side in the form of impedance angle. At the transmitter side, impedance angle is detected in real time, and phase shift control is introduced to regulate the output voltage or current of the system. Detailed analysis, implementation, hardware realization of the proposed noncommunication-based control is presented in this paper. A 250 W experimental prototype is built in the laboratory to verify the proposed control strategy. Constant voltage and constant current for battery charging application are realized through noncommunication-based control. Zero voltage switching over full range of load and minimized reactive current are achieved, which allows high efficiency operation. Compared with existing work in the literature, the proposed noncommunication-based control provides the benefits of reduced hardware cost, higher system reliability and stability.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12837","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12837","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In order to realize the precise control of the output voltage and current of the inductive power transfer (IPT) battery charging system, wireless communication-based control are generally employed in a lot of existing works. However, the stability of the IPT converter will be impaired if communication fails. This paper proposes a novel noncommunication-based control strategy with a simple switched controlled capacitor design at the receiver side of the IPT system. A series-inductor–capacitor–capacitor compensation network is selected to verify the proposed control strategy. Without feedback wireless communication, the proposed IPT system can realize reliable constant current and constant voltage output control over full load range at a fixed switching frequency. At the receiver side, switched controlled capacitor is introduced to control reactive current and convey the output-side information to the transmitter side in the form of impedance angle. At the transmitter side, impedance angle is detected in real time, and phase shift control is introduced to regulate the output voltage or current of the system. Detailed analysis, implementation, hardware realization of the proposed noncommunication-based control is presented in this paper. A 250 W experimental prototype is built in the laboratory to verify the proposed control strategy. Constant voltage and constant current for battery charging application are realized through noncommunication-based control. Zero voltage switching over full range of load and minimized reactive current are achieved, which allows high efficiency operation. Compared with existing work in the literature, the proposed noncommunication-based control provides the benefits of reduced hardware cost, higher system reliability and stability.
期刊介绍:
IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes:
Applications:
Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances.
Technologies:
Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies.
Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials.
Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems.
Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques.
Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material.
Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest.
Special Issues. Current Call for papers:
Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf