{"title":"Residual based tilt tri-rotor UAV actuator fault detection using TSK fuzzy model","authors":"Guang He, Yi Bao, Liang Xin, Zhiqiang Long","doi":"10.1049/cth2.12768","DOIUrl":null,"url":null,"abstract":"<p>Undetected actuator faults on tilt tri-rotor UAVs can lead to system failures and uncontrolled crashes. Multiple flight modes result in complex models with strong nonlinearity, making fault detection of their actuators a very challenging task. To address this issue, this article proposes a fault detection method based on residual generated by using TSK fuzzy model. Initially, the flight modes of the tilt tri-rotor UAV are modeled as the TSK fuzzy model. Following this, the residual generator is employed for rapid detection of actuator failures. To enhance detection accuracy, the kernel principal component analysis (KPCA) algorithm is used for a secondary confirmation. The proposed algorithm was validated using both a simulation platform and real flight data. The results demonstrate that the fault detection algorithm achieves high accuracy and real-time performance, with a computing time of approximately 41 ms in real controller hardware, thus meeting the requirements of practical applications.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12768","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12768","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Undetected actuator faults on tilt tri-rotor UAVs can lead to system failures and uncontrolled crashes. Multiple flight modes result in complex models with strong nonlinearity, making fault detection of their actuators a very challenging task. To address this issue, this article proposes a fault detection method based on residual generated by using TSK fuzzy model. Initially, the flight modes of the tilt tri-rotor UAV are modeled as the TSK fuzzy model. Following this, the residual generator is employed for rapid detection of actuator failures. To enhance detection accuracy, the kernel principal component analysis (KPCA) algorithm is used for a secondary confirmation. The proposed algorithm was validated using both a simulation platform and real flight data. The results demonstrate that the fault detection algorithm achieves high accuracy and real-time performance, with a computing time of approximately 41 ms in real controller hardware, thus meeting the requirements of practical applications.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.