Densely populated single-atom catalysts for boosting hydrogen generation from formic acid

IF 24.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2024-11-15 DOI:10.1002/cey2.664
Xiaogeng Zhao, Junmin Wang, Dongnuan Zhang, Yunhui Hao, Xingmian Zhang, Junna Feng, Hong Su, Cheng Feng, Chun Wang
{"title":"Densely populated single-atom catalysts for boosting hydrogen generation from formic acid","authors":"Xiaogeng Zhao,&nbsp;Junmin Wang,&nbsp;Dongnuan Zhang,&nbsp;Yunhui Hao,&nbsp;Xingmian Zhang,&nbsp;Junna Feng,&nbsp;Hong Su,&nbsp;Cheng Feng,&nbsp;Chun Wang","doi":"10.1002/cey2.664","DOIUrl":null,"url":null,"abstract":"<p>The single-atom M-N-C (M typically being Co or Fe) is a prominent material with exceptional reactivity in areas of catalysis for sustainable energy. However, the formation of metal nanoparticles in M-N-C materials is coupled with high-temperature calcination conditions, limiting the density of M-N<sub><i>x</i></sub> active sites and thus restricting the catalytic performance of such catalysts. Herein, we describe an effective decoupling strategy to construct high-density M-N<sub><i>x</i></sub> active sites by generating polyfurfuryl alcohol in the MOF precursor, effectively preventing the formation of metal nanoparticles even with up to 6.377% cobalt loading. This catalyst showed a high H<sub>2</sub> production rate of 778 mL g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> when used in the dehydrogenation reaction of formic acid. In addition to the high density of the active site, a curved carbon surface in the structure is also thought to be the reason for the high performance of the catalyst.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 1","pages":""},"PeriodicalIF":24.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.664","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.664","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The single-atom M-N-C (M typically being Co or Fe) is a prominent material with exceptional reactivity in areas of catalysis for sustainable energy. However, the formation of metal nanoparticles in M-N-C materials is coupled with high-temperature calcination conditions, limiting the density of M-Nx active sites and thus restricting the catalytic performance of such catalysts. Herein, we describe an effective decoupling strategy to construct high-density M-Nx active sites by generating polyfurfuryl alcohol in the MOF precursor, effectively preventing the formation of metal nanoparticles even with up to 6.377% cobalt loading. This catalyst showed a high H2 production rate of 778 mL gcat−1 h−1 when used in the dehydrogenation reaction of formic acid. In addition to the high density of the active site, a curved carbon surface in the structure is also thought to be the reason for the high performance of the catalyst.

Abstract Image

用于促进甲酸制氢的密集单原子催化剂
单原子M- n - c (M通常是Co或Fe)在可持续能源催化领域具有特殊的反应性。然而,M-N-C材料中金属纳米颗粒的形成与高温煅烧条件相结合,限制了M-Nx活性位点的密度,从而限制了这类催化剂的催化性能。在此,我们描述了一种有效的解耦策略,通过在MOF前驱体中生成聚糠醇来构建高密度的M-Nx活性位点,即使钴负载高达6.377%,也能有效地阻止金属纳米颗粒的形成。该催化剂用于甲酸脱氢反应时,产氢率高达778 mL gcat−1 h−1。除了活性位点的高密度外,结构中弯曲的碳表面也被认为是催化剂性能高的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信