Xiaogeng Zhao, Junmin Wang, Dongnuan Zhang, Yunhui Hao, Xingmian Zhang, Junna Feng, Hong Su, Cheng Feng, Chun Wang
{"title":"Densely populated single-atom catalysts for boosting hydrogen generation from formic acid","authors":"Xiaogeng Zhao, Junmin Wang, Dongnuan Zhang, Yunhui Hao, Xingmian Zhang, Junna Feng, Hong Su, Cheng Feng, Chun Wang","doi":"10.1002/cey2.664","DOIUrl":null,"url":null,"abstract":"<p>The single-atom M-N-C (M typically being Co or Fe) is a prominent material with exceptional reactivity in areas of catalysis for sustainable energy. However, the formation of metal nanoparticles in M-N-C materials is coupled with high-temperature calcination conditions, limiting the density of M-N<sub><i>x</i></sub> active sites and thus restricting the catalytic performance of such catalysts. Herein, we describe an effective decoupling strategy to construct high-density M-N<sub><i>x</i></sub> active sites by generating polyfurfuryl alcohol in the MOF precursor, effectively preventing the formation of metal nanoparticles even with up to 6.377% cobalt loading. This catalyst showed a high H<sub>2</sub> production rate of 778 mL g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> when used in the dehydrogenation reaction of formic acid. In addition to the high density of the active site, a curved carbon surface in the structure is also thought to be the reason for the high performance of the catalyst.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.664","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.664","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The single-atom M-N-C (M typically being Co or Fe) is a prominent material with exceptional reactivity in areas of catalysis for sustainable energy. However, the formation of metal nanoparticles in M-N-C materials is coupled with high-temperature calcination conditions, limiting the density of M-Nx active sites and thus restricting the catalytic performance of such catalysts. Herein, we describe an effective decoupling strategy to construct high-density M-Nx active sites by generating polyfurfuryl alcohol in the MOF precursor, effectively preventing the formation of metal nanoparticles even with up to 6.377% cobalt loading. This catalyst showed a high H2 production rate of 778 mL gcat−1 h−1 when used in the dehydrogenation reaction of formic acid. In addition to the high density of the active site, a curved carbon surface in the structure is also thought to be the reason for the high performance of the catalyst.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.