Machine Learning Meets Encrypted Search: The Impact and Efficiency of OMKSA in Data Security

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhongkai Wei, Ye Su, Xi Zhang, Haining Yang, Jing Qin, Jixin Ma
{"title":"Machine Learning Meets Encrypted Search: The Impact and Efficiency of OMKSA in Data Security","authors":"Zhongkai Wei,&nbsp;Ye Su,&nbsp;Xi Zhang,&nbsp;Haining Yang,&nbsp;Jing Qin,&nbsp;Jixin Ma","doi":"10.1155/int/2429577","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The convergence of machine learning and searchable encryption enhances the ability to protect the privacy and security of data and enhances the processing power of confidential data. To enable users to efficiently perform machine learning tasks on encrypted data domains, we delve into oblivious keyword search with authorization (OKSA). The OKSA scheme effectively maintains the privacy of the user’s query keywords and prevents the cloud server from inferring ciphertext information through the searching process. However, limitations arise because the traditional OKSA approach does not support multi-keyword searches. If a data file is associated with multiple keywords, each keyword and corresponding data must be encrypted one by one, resulting in inefficiency. We introduce an innovative approach aimed at enhancing the efficiency of search processes while addressing the limitation of current encryption and search systems that handle only a single keyword. This method, known as the oblivious multiple keyword search with authorization (OMKSA), is designed for more effective keyword retrieval. One of our important innovations is that it uses the arithmetic techniques of bilinear pairs to generate new tokens and new search methods to optimize communication efficiency. Moreover, we present a detailed and rigorous demonstration of the security for our proposed protocol, aligned with the predefined security model. We conducted a comparative experiment to determine which of the two schemes, OKSA and OMKSA, is more efficient when querying multiple keywords. Based on our experimental results, our OMKSA is very efficient for data searchers. As the number of query keywords increases, the computational overhead of connected keyword searches remains stable. Finally, as we move into the 5G era, the potential applications of OMKSA are huge, with clear implications for areas such as machine learning and artificial intelligence. Our findings pave the way for further exploration and deployment of these frontier areas.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/2429577","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/2429577","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The convergence of machine learning and searchable encryption enhances the ability to protect the privacy and security of data and enhances the processing power of confidential data. To enable users to efficiently perform machine learning tasks on encrypted data domains, we delve into oblivious keyword search with authorization (OKSA). The OKSA scheme effectively maintains the privacy of the user’s query keywords and prevents the cloud server from inferring ciphertext information through the searching process. However, limitations arise because the traditional OKSA approach does not support multi-keyword searches. If a data file is associated with multiple keywords, each keyword and corresponding data must be encrypted one by one, resulting in inefficiency. We introduce an innovative approach aimed at enhancing the efficiency of search processes while addressing the limitation of current encryption and search systems that handle only a single keyword. This method, known as the oblivious multiple keyword search with authorization (OMKSA), is designed for more effective keyword retrieval. One of our important innovations is that it uses the arithmetic techniques of bilinear pairs to generate new tokens and new search methods to optimize communication efficiency. Moreover, we present a detailed and rigorous demonstration of the security for our proposed protocol, aligned with the predefined security model. We conducted a comparative experiment to determine which of the two schemes, OKSA and OMKSA, is more efficient when querying multiple keywords. Based on our experimental results, our OMKSA is very efficient for data searchers. As the number of query keywords increases, the computational overhead of connected keyword searches remains stable. Finally, as we move into the 5G era, the potential applications of OMKSA are huge, with clear implications for areas such as machine learning and artificial intelligence. Our findings pave the way for further exploration and deployment of these frontier areas.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信