Unsupervised learning inversion of seismic velocity models based on a multi-scale strategy

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Senlin Yang, Bin Liu, Yuxiao Ren, Peng Jiang
{"title":"Unsupervised learning inversion of seismic velocity models based on a multi-scale strategy","authors":"Senlin Yang,&nbsp;Bin Liu,&nbsp;Yuxiao Ren,&nbsp;Peng Jiang","doi":"10.1111/1365-2478.13665","DOIUrl":null,"url":null,"abstract":"<p>Deep learning-based methods have performed well in seismic waveform inversion tasks in recent years, while the need for velocity models as labels has somewhat limited their application. Unsupervised learning allows us to train the neural network without labels. When inverting seismic velocity models from observed data, labels are often unavailable for real data. To address this problem and improve network generalization, we introduce a multi-scale strategy to enhance the performance of unsupervised learning. The first ‘multi-scale’ is derived from the conventional full waveform inversion strategy, in which the low-, middle- and high-frequency inversion results are successively predicted during the network training. Another ‘multi-scale’ is to introduce multi-scale similarity as an additional data loss term to improve the inversion results. With 12,000 samples from the overthrust model, our method obtains comparable results with the supervised learning method and outperforms unsupervised methods that rely only on the mean square error as a loss function. We compare the performance of the proposed method with multi-scale full waveform inversion on the Marmousi model, and the proposed method achieves better results at low- and middle-frequencies, and, as a result, it provides good initial models for further full waveform inversion updates.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 2","pages":"471-486"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13665","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning-based methods have performed well in seismic waveform inversion tasks in recent years, while the need for velocity models as labels has somewhat limited their application. Unsupervised learning allows us to train the neural network without labels. When inverting seismic velocity models from observed data, labels are often unavailable for real data. To address this problem and improve network generalization, we introduce a multi-scale strategy to enhance the performance of unsupervised learning. The first ‘multi-scale’ is derived from the conventional full waveform inversion strategy, in which the low-, middle- and high-frequency inversion results are successively predicted during the network training. Another ‘multi-scale’ is to introduce multi-scale similarity as an additional data loss term to improve the inversion results. With 12,000 samples from the overthrust model, our method obtains comparable results with the supervised learning method and outperforms unsupervised methods that rely only on the mean square error as a loss function. We compare the performance of the proposed method with multi-scale full waveform inversion on the Marmousi model, and the proposed method achieves better results at low- and middle-frequencies, and, as a result, it provides good initial models for further full waveform inversion updates.

基于多尺度策略的地震速度模型无监督学习反演
近年来,基于深度学习的方法在地震波形反演任务中表现良好,但对速度模型作为标签的需求在一定程度上限制了它们的应用。无监督学习允许我们训练没有标签的神经网络。当从观测数据反演地震速度模型时,通常无法获得实际数据的标签。为了解决这个问题并提高网络泛化,我们引入了一种多尺度策略来提高无监督学习的性能。第一个“多尺度”来源于传统的全波形反演策略,在网络训练过程中依次预测低、中、高频的反演结果。另一种“多尺度”是引入多尺度相似度作为额外的数据丢失项,以改善反演结果。对于来自逆冲模型的12,000个样本,我们的方法获得了与监督学习方法相当的结果,并且优于仅依赖均方误差作为损失函数的无监督学习方法。将该方法与Marmousi模型上的多尺度全波形反演进行了性能比较,结果表明,该方法在低频和中频处取得了较好的效果,为进一步的全波形反演更新提供了良好的初始模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信