New insights into the thermo-tectonic development of the Suez rift within the framework of the northern Arabian–Nubian Shield

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Sherif Mansour, Noriko Hasebe, Ulrich A. Glasmacher, Akihiro Tamura, Mohamed K. El-Shafei
{"title":"New insights into the thermo-tectonic development of the Suez rift within the framework of the northern Arabian–Nubian Shield","authors":"Sherif Mansour,&nbsp;Noriko Hasebe,&nbsp;Ulrich A. Glasmacher,&nbsp;Akihiro Tamura,&nbsp;Mohamed K. El-Shafei","doi":"10.1002/esp.6054","DOIUrl":null,"url":null,"abstract":"<p>The Gulf of Suez is a young continental rift, the flanks of which make up the Arabian–Nubian Shield basement complex that formed during the East African Orogeny. The impact and significance of the consecutive tectono-thermal activities on the Arabian–Nubian Shield and the rifting processes in the Gulf of Suez remain uncertain. Combining zircon and apatite fission-track dating with time–temperature modelling has been effective in addressing these issues. We here present thermochronological data for 20 basement samples collected from the Samra Mountain region at the northern tip of the Gulf of Suez's eastern flank. Zircon fission-track data revealed two age groups separated spatially and dating from ca. 652 ± 25 Ma and ca. 426 ± 31 Ma. In contrast, apatite fission-track data revealed three spatially separated age groups dating from ca. 473 ± 10 Ma, ca. 269 ± 29 Ma and ca. 101 ± 12 Ma. Reconstructed time–temperature historical records revealed four distinct rapid cooling pulses (i.e. Neoproterozoic, Devonian–Carboniferous, Cretaceous and Oligocene–Miocene) consistent with the tectonic history and regional geology. By integrating our findings with the regional tectonic and sedimentation histories, the relationship between cooling events and exhumation events could be inferred. These cooling pulses were activated in response to four events: (1) the Precambrian–Cambrian post-accretion erosional event, (2) the Devonian–Carboniferous Variscan tectonic event, (3) the Cretaceous Gondwana disintegration and (4) the Oligocene–Miocene Gulf of Suez rifting, respectively. In the studied region, no thermal overprint was seen in association with the rifting in the Gulf of Suez, suggesting that the region had been segmented into northern and southern segments. A southward thermal source, the Arabian margin plume, caused an increase in the rift flank elevation and heat flow in the southern Sinai.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"50 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.6054","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Gulf of Suez is a young continental rift, the flanks of which make up the Arabian–Nubian Shield basement complex that formed during the East African Orogeny. The impact and significance of the consecutive tectono-thermal activities on the Arabian–Nubian Shield and the rifting processes in the Gulf of Suez remain uncertain. Combining zircon and apatite fission-track dating with time–temperature modelling has been effective in addressing these issues. We here present thermochronological data for 20 basement samples collected from the Samra Mountain region at the northern tip of the Gulf of Suez's eastern flank. Zircon fission-track data revealed two age groups separated spatially and dating from ca. 652 ± 25 Ma and ca. 426 ± 31 Ma. In contrast, apatite fission-track data revealed three spatially separated age groups dating from ca. 473 ± 10 Ma, ca. 269 ± 29 Ma and ca. 101 ± 12 Ma. Reconstructed time–temperature historical records revealed four distinct rapid cooling pulses (i.e. Neoproterozoic, Devonian–Carboniferous, Cretaceous and Oligocene–Miocene) consistent with the tectonic history and regional geology. By integrating our findings with the regional tectonic and sedimentation histories, the relationship between cooling events and exhumation events could be inferred. These cooling pulses were activated in response to four events: (1) the Precambrian–Cambrian post-accretion erosional event, (2) the Devonian–Carboniferous Variscan tectonic event, (3) the Cretaceous Gondwana disintegration and (4) the Oligocene–Miocene Gulf of Suez rifting, respectively. In the studied region, no thermal overprint was seen in association with the rifting in the Gulf of Suez, suggesting that the region had been segmented into northern and southern segments. A southward thermal source, the Arabian margin plume, caused an increase in the rift flank elevation and heat flow in the southern Sinai.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信