Jacky Chung-Hao Wu, Tzu-Chi Chien, Chiung-Chih Chang, Hsin-I Chang, Hui-Ju Tsai, Min-Yu Lan, Nien-Chen Wu, Henry Horng-Shing Lu
{"title":"Learning-Based Progression Detection of Alzheimer’s Disease Using 3D MRI Images","authors":"Jacky Chung-Hao Wu, Tzu-Chi Chien, Chiung-Chih Chang, Hsin-I Chang, Hui-Ju Tsai, Min-Yu Lan, Nien-Chen Wu, Henry Horng-Shing Lu","doi":"10.1155/int/3981977","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Alzheimer’s disease (AD) is an irreversible brain disease. In addition to the functional deterioration of memory and cognition, patients with severe conditions lose their self-care ability. Patients exhibiting symptoms are often attributed to aging and thus lack proper medical care. If it can be diagnosed early, the doctor can provide adequate treatments to mitigate the symptoms. Magnetic resonance imaging (MRI) can reflect the characteristics of different human tissues and organs, and is a common tool implemented in clinical examinations. In this study, we tested learning-based approaches to detect disease progression in AD patients using MRI. Specifically, each patient is categorized as one of the following four classes: cognitive normal, early mild cognitive impairment, late mild cognitive impairment, and AD. To extract 3D information in MRI, we proposed a 3D convolutional neural network structure based on ResNet3D-18. We designed various multiclass classification frameworks. Moreover, we implemented ensemble classification combining these frameworks. Experiments demonstrated great potential for learning-based approaches on the Alzheimer’s Disease Neuroimaging Initiative dataset. The ensemble approach performed the best with an accuracy of 0.950, which is competitive with neurologists in diagnosing AD progression in clinical practice. With precise detection, patients can understand their conditions early and seek proper treatments.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/3981977","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/3981977","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD) is an irreversible brain disease. In addition to the functional deterioration of memory and cognition, patients with severe conditions lose their self-care ability. Patients exhibiting symptoms are often attributed to aging and thus lack proper medical care. If it can be diagnosed early, the doctor can provide adequate treatments to mitigate the symptoms. Magnetic resonance imaging (MRI) can reflect the characteristics of different human tissues and organs, and is a common tool implemented in clinical examinations. In this study, we tested learning-based approaches to detect disease progression in AD patients using MRI. Specifically, each patient is categorized as one of the following four classes: cognitive normal, early mild cognitive impairment, late mild cognitive impairment, and AD. To extract 3D information in MRI, we proposed a 3D convolutional neural network structure based on ResNet3D-18. We designed various multiclass classification frameworks. Moreover, we implemented ensemble classification combining these frameworks. Experiments demonstrated great potential for learning-based approaches on the Alzheimer’s Disease Neuroimaging Initiative dataset. The ensemble approach performed the best with an accuracy of 0.950, which is competitive with neurologists in diagnosing AD progression in clinical practice. With precise detection, patients can understand their conditions early and seek proper treatments.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.