Learning-Based Progression Detection of Alzheimer’s Disease Using 3D MRI Images

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jacky Chung-Hao Wu, Tzu-Chi Chien, Chiung-Chih Chang, Hsin-I Chang, Hui-Ju Tsai, Min-Yu Lan, Nien-Chen Wu, Henry Horng-Shing Lu
{"title":"Learning-Based Progression Detection of Alzheimer’s Disease Using 3D MRI Images","authors":"Jacky Chung-Hao Wu,&nbsp;Tzu-Chi Chien,&nbsp;Chiung-Chih Chang,&nbsp;Hsin-I Chang,&nbsp;Hui-Ju Tsai,&nbsp;Min-Yu Lan,&nbsp;Nien-Chen Wu,&nbsp;Henry Horng-Shing Lu","doi":"10.1155/int/3981977","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Alzheimer’s disease (AD) is an irreversible brain disease. In addition to the functional deterioration of memory and cognition, patients with severe conditions lose their self-care ability. Patients exhibiting symptoms are often attributed to aging and thus lack proper medical care. If it can be diagnosed early, the doctor can provide adequate treatments to mitigate the symptoms. Magnetic resonance imaging (MRI) can reflect the characteristics of different human tissues and organs, and is a common tool implemented in clinical examinations. In this study, we tested learning-based approaches to detect disease progression in AD patients using MRI. Specifically, each patient is categorized as one of the following four classes: cognitive normal, early mild cognitive impairment, late mild cognitive impairment, and AD. To extract 3D information in MRI, we proposed a 3D convolutional neural network structure based on ResNet3D-18. We designed various multiclass classification frameworks. Moreover, we implemented ensemble classification combining these frameworks. Experiments demonstrated great potential for learning-based approaches on the Alzheimer’s Disease Neuroimaging Initiative dataset. The ensemble approach performed the best with an accuracy of 0.950, which is competitive with neurologists in diagnosing AD progression in clinical practice. With precise detection, patients can understand their conditions early and seek proper treatments.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/3981977","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/3981977","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s disease (AD) is an irreversible brain disease. In addition to the functional deterioration of memory and cognition, patients with severe conditions lose their self-care ability. Patients exhibiting symptoms are often attributed to aging and thus lack proper medical care. If it can be diagnosed early, the doctor can provide adequate treatments to mitigate the symptoms. Magnetic resonance imaging (MRI) can reflect the characteristics of different human tissues and organs, and is a common tool implemented in clinical examinations. In this study, we tested learning-based approaches to detect disease progression in AD patients using MRI. Specifically, each patient is categorized as one of the following four classes: cognitive normal, early mild cognitive impairment, late mild cognitive impairment, and AD. To extract 3D information in MRI, we proposed a 3D convolutional neural network structure based on ResNet3D-18. We designed various multiclass classification frameworks. Moreover, we implemented ensemble classification combining these frameworks. Experiments demonstrated great potential for learning-based approaches on the Alzheimer’s Disease Neuroimaging Initiative dataset. The ensemble approach performed the best with an accuracy of 0.950, which is competitive with neurologists in diagnosing AD progression in clinical practice. With precise detection, patients can understand their conditions early and seek proper treatments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信