{"title":"An online loop closing current calculation method for complex distribution networks considering source and load uncertainties","authors":"Weifeng Peng, Licheng Sha, Kaiyuan Zheng, Shufeng Dong, Xin Zhang, Jing Tian","doi":"10.1049/gtd2.13359","DOIUrl":null,"url":null,"abstract":"<p>To address the challenges posed by frequent source and load fluctuations in existing loop closing current calculation methods, this paper proposes an online loop closing current calculation method that considers source and load uncertainties. First, a dual-stack dynamic monitoring system is utilized to obtain real-time voltage and current variations before and after disturbances. Second, Thevenin's theorem is employed to build an equivalent model of the distribution network, simplifying the complex network into a combination of an independent voltage source and a series impedance. Then, the steady-state loop closing current is calculated based on the open-circuit voltage and equivalent impedance at both sides of the loop closing point. Next, the optimal frequency method is applied to determine the equivalent impedance and attenuation time constant at a specific frequency, achieving accurate calculation of the transient loop closing current. Finally, simulations are conducted to model the fluctuations in distributed generation and load, analysing the steady-state and transient loop closing currents. The simulation results demonstrate that the proposed method accurately captures the effects of source and load fluctuations on the loop closing current in dynamic environments, with minimal calculation error, indicating its high practicality.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13359","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13359","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To address the challenges posed by frequent source and load fluctuations in existing loop closing current calculation methods, this paper proposes an online loop closing current calculation method that considers source and load uncertainties. First, a dual-stack dynamic monitoring system is utilized to obtain real-time voltage and current variations before and after disturbances. Second, Thevenin's theorem is employed to build an equivalent model of the distribution network, simplifying the complex network into a combination of an independent voltage source and a series impedance. Then, the steady-state loop closing current is calculated based on the open-circuit voltage and equivalent impedance at both sides of the loop closing point. Next, the optimal frequency method is applied to determine the equivalent impedance and attenuation time constant at a specific frequency, achieving accurate calculation of the transient loop closing current. Finally, simulations are conducted to model the fluctuations in distributed generation and load, analysing the steady-state and transient loop closing currents. The simulation results demonstrate that the proposed method accurately captures the effects of source and load fluctuations on the loop closing current in dynamic environments, with minimal calculation error, indicating its high practicality.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf