High-performance and flexible thermoelectric generator based on a robust carbon nanotube/BiSbTe foam

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2024-11-15 DOI:10.1002/cey2.650
Myeong Hoon Jeong, Eun Jin Bae, Byoungwook Park, Jong-Woon Ha, Mijeong Han, Young Hun Kang
{"title":"High-performance and flexible thermoelectric generator based on a robust carbon nanotube/BiSbTe foam","authors":"Myeong Hoon Jeong,&nbsp;Eun Jin Bae,&nbsp;Byoungwook Park,&nbsp;Jong-Woon Ha,&nbsp;Mijeong Han,&nbsp;Young Hun Kang","doi":"10.1002/cey2.650","DOIUrl":null,"url":null,"abstract":"<p>Organic thermoelectric generators (TEGs) are flexible and lightweight, but they often have high electrical resistance, poor output power, and low mechanical durability, because of which their thermoelectric performance is poor. We used a facile and rapid solvent evaporation process to prepare a robust carbon nanotube/Bi<sub>0.45</sub>Sb<sub>1.55</sub>Te<sub>3</sub> (CNT/BST) foam with a high thermoelectric figure of merit (<i>zT</i>). The BST sub-micronparticles effectively create an electrically conductive network within the three-dimensional porous CNT foam to greatly improve the electrical conductivity and the Seebeck coefficient and reinforce the mechanical strength of the composite against applied stresses. The CNT/BST foam had a <i>zT</i> value of 7.8 × 10<sup>−3</sup> at 300 K, which was 5.7 times higher than that of pristine CNT foam. We used the CNT/BST foam to fabricate a flexible TEG with an internal resistance of 12.3 Ω and an output power of 15.7 µW at a temperature difference of 21.8 K. The flexible TEG showed excellent stability and durability even after 10,000 bending cycles. Finally, we demonstrate the shapeability of the CNT/BST foam by fabricating a concave TEG with conformal contact on the surface of a cylindrical glass tube, which suggests its practical applicability as a thermal sensor.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.650","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.650","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Organic thermoelectric generators (TEGs) are flexible and lightweight, but they often have high electrical resistance, poor output power, and low mechanical durability, because of which their thermoelectric performance is poor. We used a facile and rapid solvent evaporation process to prepare a robust carbon nanotube/Bi0.45Sb1.55Te3 (CNT/BST) foam with a high thermoelectric figure of merit (zT). The BST sub-micronparticles effectively create an electrically conductive network within the three-dimensional porous CNT foam to greatly improve the electrical conductivity and the Seebeck coefficient and reinforce the mechanical strength of the composite against applied stresses. The CNT/BST foam had a zT value of 7.8 × 10−3 at 300 K, which was 5.7 times higher than that of pristine CNT foam. We used the CNT/BST foam to fabricate a flexible TEG with an internal resistance of 12.3 Ω and an output power of 15.7 µW at a temperature difference of 21.8 K. The flexible TEG showed excellent stability and durability even after 10,000 bending cycles. Finally, we demonstrate the shapeability of the CNT/BST foam by fabricating a concave TEG with conformal contact on the surface of a cylindrical glass tube, which suggests its practical applicability as a thermal sensor.

Abstract Image

基于坚固的碳纳米管/ bbte泡沫的高性能柔性热电发电机
有机热电发电机(teg)具有柔性和轻便性,但往往电阻高,输出功率差,机械耐久性低,因此热电性能较差。采用简单快速的溶剂蒸发工艺制备了具有高热电性能(zT)的碳纳米管/Bi0.45Sb1.55Te3 (CNT/BST)泡沫。BST亚微粒子有效地在三维多孔碳纳米管泡沫内创建导电网络,大大提高了导电性和塞贝克系数,并增强了复合材料抗施加应力的机械强度。在300 K时,碳纳米管/BST泡沫的zT值为7.8 × 10−3,是原始碳纳米管泡沫的5.7倍。我们使用CNT/BST泡沫制造了内阻为12.3 Ω的柔性TEG,在21.8 K的温差下输出功率为15.7µW。即使在10,000次弯曲循环后,柔性TEG也表现出出色的稳定性和耐久性。最后,我们通过在圆柱形玻璃管表面制造具有保形接触的凹形TEG来证明CNT/BST泡沫的可塑性,这表明其作为热传感器的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信