Adaptive inverse control for trajectory tracking with dead-zone nonlinearity under cyberattacks

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Farnaz Sabahi
{"title":"Adaptive inverse control for trajectory tracking with dead-zone nonlinearity under cyberattacks","authors":"Farnaz Sabahi","doi":"10.1049/cth2.12776","DOIUrl":null,"url":null,"abstract":"<p>Control systems rely heavily on the accuracy and reliability of sensor data; however, the integrity of these data can be compromised through spoofing attacks, leading to significant modelling errors that can render control impractical. In addition, centralized control poses a significant threat to system security. To address these issues, a distributed framework is suggested for a discrete-time nonlinear system that encounters unknown dead-zones at its input. The framework uses the inherent resilience of a decentralized peer-to-peer network to secure information exchange, eliminating the need for prior knowledge of system dynamics or potential attacks. The proposed framework performs two complex tasks: identifying the nonlinear system and dealing with the unknown nonlinearity at the input in the form of a dead-zone. An adaptive dead-zone inverse is used to handle the unknown nonlinearity at the input in the form of a dead-zone and integrate blockchain technology to secure communication between components. The blockchain component ensures tamper-proof data transmission and resistance to cyberattacks, providing both detection and defence mechanisms without prior knowledge of system dynamics or potential attacks. The actuator and plant components are matched and synchronized using a private network with static nodes, ensuring deterministic and well-coordinated communication. Simulation results demonstrate that the proposed framework both with and without blockchain integration, maintains stability and outperforms traditional methods in terms of robustness and accuracy, even when all parts of the framework are adjusted in response to attacks.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12776","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12776","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Control systems rely heavily on the accuracy and reliability of sensor data; however, the integrity of these data can be compromised through spoofing attacks, leading to significant modelling errors that can render control impractical. In addition, centralized control poses a significant threat to system security. To address these issues, a distributed framework is suggested for a discrete-time nonlinear system that encounters unknown dead-zones at its input. The framework uses the inherent resilience of a decentralized peer-to-peer network to secure information exchange, eliminating the need for prior knowledge of system dynamics or potential attacks. The proposed framework performs two complex tasks: identifying the nonlinear system and dealing with the unknown nonlinearity at the input in the form of a dead-zone. An adaptive dead-zone inverse is used to handle the unknown nonlinearity at the input in the form of a dead-zone and integrate blockchain technology to secure communication between components. The blockchain component ensures tamper-proof data transmission and resistance to cyberattacks, providing both detection and defence mechanisms without prior knowledge of system dynamics or potential attacks. The actuator and plant components are matched and synchronized using a private network with static nodes, ensuring deterministic and well-coordinated communication. Simulation results demonstrate that the proposed framework both with and without blockchain integration, maintains stability and outperforms traditional methods in terms of robustness and accuracy, even when all parts of the framework are adjusted in response to attacks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信