{"title":"Adaptive inverse control for trajectory tracking with dead-zone nonlinearity under cyberattacks","authors":"Farnaz Sabahi","doi":"10.1049/cth2.12776","DOIUrl":null,"url":null,"abstract":"<p>Control systems rely heavily on the accuracy and reliability of sensor data; however, the integrity of these data can be compromised through spoofing attacks, leading to significant modelling errors that can render control impractical. In addition, centralized control poses a significant threat to system security. To address these issues, a distributed framework is suggested for a discrete-time nonlinear system that encounters unknown dead-zones at its input. The framework uses the inherent resilience of a decentralized peer-to-peer network to secure information exchange, eliminating the need for prior knowledge of system dynamics or potential attacks. The proposed framework performs two complex tasks: identifying the nonlinear system and dealing with the unknown nonlinearity at the input in the form of a dead-zone. An adaptive dead-zone inverse is used to handle the unknown nonlinearity at the input in the form of a dead-zone and integrate blockchain technology to secure communication between components. The blockchain component ensures tamper-proof data transmission and resistance to cyberattacks, providing both detection and defence mechanisms without prior knowledge of system dynamics or potential attacks. The actuator and plant components are matched and synchronized using a private network with static nodes, ensuring deterministic and well-coordinated communication. Simulation results demonstrate that the proposed framework both with and without blockchain integration, maintains stability and outperforms traditional methods in terms of robustness and accuracy, even when all parts of the framework are adjusted in response to attacks.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12776","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12776","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Control systems rely heavily on the accuracy and reliability of sensor data; however, the integrity of these data can be compromised through spoofing attacks, leading to significant modelling errors that can render control impractical. In addition, centralized control poses a significant threat to system security. To address these issues, a distributed framework is suggested for a discrete-time nonlinear system that encounters unknown dead-zones at its input. The framework uses the inherent resilience of a decentralized peer-to-peer network to secure information exchange, eliminating the need for prior knowledge of system dynamics or potential attacks. The proposed framework performs two complex tasks: identifying the nonlinear system and dealing with the unknown nonlinearity at the input in the form of a dead-zone. An adaptive dead-zone inverse is used to handle the unknown nonlinearity at the input in the form of a dead-zone and integrate blockchain technology to secure communication between components. The blockchain component ensures tamper-proof data transmission and resistance to cyberattacks, providing both detection and defence mechanisms without prior knowledge of system dynamics or potential attacks. The actuator and plant components are matched and synchronized using a private network with static nodes, ensuring deterministic and well-coordinated communication. Simulation results demonstrate that the proposed framework both with and without blockchain integration, maintains stability and outperforms traditional methods in terms of robustness and accuracy, even when all parts of the framework are adjusted in response to attacks.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.