Dmitry Bondar, Aurèlien Canizarès, Dario Bilardello, Pedro Valdivia, Alessio Zandonà, Claudia Romano, Mathieu Allix, Danilo Di Genova
{"title":"Nanolite Crystallization in Volcanic Glasses: Insights From High-Temperature Raman Spectroscopy and Low-Temperature Rock-Magnetic Analysis","authors":"Dmitry Bondar, Aurèlien Canizarès, Dario Bilardello, Pedro Valdivia, Alessio Zandonà, Claudia Romano, Mathieu Allix, Danilo Di Genova","doi":"10.1029/2024GC011846","DOIUrl":null,"url":null,"abstract":"<p>High-temperature Raman spectroscopy offers a cost-effective alternative to extensive infrastructure and sensitive instrumentation for investigating nanolite crystallization in undercooled volcanic melts, a key area of interest in volcanology. This study examined nanolite formation in anhydrous andesite melts in situ at high temperatures, identifying distinct Raman peaks at 310 and 670 cm<sup>−1</sup> appearing above the glass transition temperature. The initial amorphous glass remained stable up to 655°C, beyond which Fe-Ti-oxide nanolites progressively formed at higher temperatures, as also confirmed by complementary XRD analysis. The evolution of the 310 cm<sup>−1</sup> peak depends only on the magnitude of nanolite crystallization, while the intensity of the 670 cm<sup>−1</sup> peak is temperature-dependent and challenging to observe above 500°C. Complementary low-temperature rock-magnetic analyses confirmed Fe-Ti-oxide nanocrystallization with nanolites around 20 nm in diameter. The study tested lasers of different wavelengths (from 355 to 514 nm) and found the green laser to be the most effective for collecting spectra at both room and high temperature. However, above 720°C, black body radiation significantly hinders Raman observation with the green laser when using a non-confocal setup and analyzing poorly transparent samples. If higher temperature measurements are desired, switching to a confocal setup and using lower wavelength lasers should be considered. This research offers a protocol for studying nanolite formation and melt dynamics at high temperatures, providing a foundation for future studies of volcanic processes.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011846","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011846","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature Raman spectroscopy offers a cost-effective alternative to extensive infrastructure and sensitive instrumentation for investigating nanolite crystallization in undercooled volcanic melts, a key area of interest in volcanology. This study examined nanolite formation in anhydrous andesite melts in situ at high temperatures, identifying distinct Raman peaks at 310 and 670 cm−1 appearing above the glass transition temperature. The initial amorphous glass remained stable up to 655°C, beyond which Fe-Ti-oxide nanolites progressively formed at higher temperatures, as also confirmed by complementary XRD analysis. The evolution of the 310 cm−1 peak depends only on the magnitude of nanolite crystallization, while the intensity of the 670 cm−1 peak is temperature-dependent and challenging to observe above 500°C. Complementary low-temperature rock-magnetic analyses confirmed Fe-Ti-oxide nanocrystallization with nanolites around 20 nm in diameter. The study tested lasers of different wavelengths (from 355 to 514 nm) and found the green laser to be the most effective for collecting spectra at both room and high temperature. However, above 720°C, black body radiation significantly hinders Raman observation with the green laser when using a non-confocal setup and analyzing poorly transparent samples. If higher temperature measurements are desired, switching to a confocal setup and using lower wavelength lasers should be considered. This research offers a protocol for studying nanolite formation and melt dynamics at high temperatures, providing a foundation for future studies of volcanic processes.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.