Thermomechanical properties and microstructure of concrete made with recycled concrete aggregates after exposure to high temperatures

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bruno Fernandes, Hélène Carré, Cécile Gaborieau, Jean-Christophe Mindeguia, Céline Perlot, Christian La Borderie, Yannick Anguy
{"title":"Thermomechanical properties and microstructure of concrete made with recycled concrete aggregates after exposure to high temperatures","authors":"Bruno Fernandes,&nbsp;Hélène Carré,&nbsp;Cécile Gaborieau,&nbsp;Jean-Christophe Mindeguia,&nbsp;Céline Perlot,&nbsp;Christian La Borderie,&nbsp;Yannick Anguy","doi":"10.1002/fam.3245","DOIUrl":null,"url":null,"abstract":"<p>Using recycled concrete aggregates (RCA) in concrete has emerged as a promising solution to produce concrete with reduced environmental impact and adequate performance. However, a deeper understanding of the thermal and mechanical behavior of concrete made with RCA is still needed for further application in real structures. The present paper addresses one of the crucial issues for structural concrete: its behavior after exposure to high temperature. Four concrete mixes are studied: a reference concrete made with natural aggregates (NA), two concretes including 40% and 100% of coarse RCA as a direct replacement (DR) for coarse NA, and a concrete made with 100% of coarse RCA relying on a strength-based replacement (SBR). The SBR concrete mix was designed to achieve the same performance (28 days compressive strength and slump) as the reference concrete. All specimens were exposed to temperatures of 200, 400, and 600°C. After cooling, samples were evaluated for residual mass loss, thermal, and mechanical properties. Microstructural quantitative analyses were conducted over several square millimeters to show that interfaces between the old and new cement pastes, peculiar to concrete made with RCA, do not further promote fracture development. The results show that after exposure to high temperatures, the thermal and mechanical performances of concrete made with RCA are reduced in the same manner and extent as in concrete made with NA. When the RCA-based concrete is designed to achieve similar performance as concrete with NA at room temperature (SBR), the residual thermomechanical behavior is similar between both concretes.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 1","pages":"59-75"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3245","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using recycled concrete aggregates (RCA) in concrete has emerged as a promising solution to produce concrete with reduced environmental impact and adequate performance. However, a deeper understanding of the thermal and mechanical behavior of concrete made with RCA is still needed for further application in real structures. The present paper addresses one of the crucial issues for structural concrete: its behavior after exposure to high temperature. Four concrete mixes are studied: a reference concrete made with natural aggregates (NA), two concretes including 40% and 100% of coarse RCA as a direct replacement (DR) for coarse NA, and a concrete made with 100% of coarse RCA relying on a strength-based replacement (SBR). The SBR concrete mix was designed to achieve the same performance (28 days compressive strength and slump) as the reference concrete. All specimens were exposed to temperatures of 200, 400, and 600°C. After cooling, samples were evaluated for residual mass loss, thermal, and mechanical properties. Microstructural quantitative analyses were conducted over several square millimeters to show that interfaces between the old and new cement pastes, peculiar to concrete made with RCA, do not further promote fracture development. The results show that after exposure to high temperatures, the thermal and mechanical performances of concrete made with RCA are reduced in the same manner and extent as in concrete made with NA. When the RCA-based concrete is designed to achieve similar performance as concrete with NA at room temperature (SBR), the residual thermomechanical behavior is similar between both concretes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fire and Materials
Fire and Materials 工程技术-材料科学:综合
CiteScore
4.60
自引率
5.30%
发文量
72
审稿时长
3 months
期刊介绍: Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals. Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信