Silicone Rheological Properties for Material Extrusion Additive Manufacturing

Wenbo Liu, Lachlan M. Peeke, Tingxi Lu, Aijie Han, Michael A. Hickner
{"title":"Silicone Rheological Properties for Material Extrusion Additive Manufacturing","authors":"Wenbo Liu,&nbsp;Lachlan M. Peeke,&nbsp;Tingxi Lu,&nbsp;Aijie Han,&nbsp;Michael A. Hickner","doi":"10.1002/appl.202400203","DOIUrl":null,"url":null,"abstract":"<p>Additive manufacturing (AM), known as three-dimensional (3D) printing, uses computer-controlled materials deposition to fabricate 3D objects by selectively depositing materials, usually in a layer-wised fashion, to build a 3D object using free-form fabrication. Integrating silicone elastomers with AM deposition strategies has been of interest due to the important application characteristics of silicones such as excellent mechanical properties, thermal resistance, and chemical inertness. This work presents a study on the shear-thinning properties of thermally-curable liquid silicone feedstocks to describe ideal flow and shape-retention properties for direct ink writing of liquid silicone rubbers. To complement the direct ink writing process developed in this work for silicone AM, flow properties of various silicone feedstocks were identified through measurement of rheological properties using the AM fluid dispenser under various pressures, supported by parallel plate oscillatory shear rheology. A systematic process for evaluating and investigating the AM performance of seven different grades of silicones is introduced. The shape retention, overhang, and dimensional accuracy of these silicones in 3D printing process have been compared and summarized. This systematic evaluation methodology can be applied for silicone material selection and printing of silicone parts with complicated architectures.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202400203","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.202400203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing (AM), known as three-dimensional (3D) printing, uses computer-controlled materials deposition to fabricate 3D objects by selectively depositing materials, usually in a layer-wised fashion, to build a 3D object using free-form fabrication. Integrating silicone elastomers with AM deposition strategies has been of interest due to the important application characteristics of silicones such as excellent mechanical properties, thermal resistance, and chemical inertness. This work presents a study on the shear-thinning properties of thermally-curable liquid silicone feedstocks to describe ideal flow and shape-retention properties for direct ink writing of liquid silicone rubbers. To complement the direct ink writing process developed in this work for silicone AM, flow properties of various silicone feedstocks were identified through measurement of rheological properties using the AM fluid dispenser under various pressures, supported by parallel plate oscillatory shear rheology. A systematic process for evaluating and investigating the AM performance of seven different grades of silicones is introduced. The shape retention, overhang, and dimensional accuracy of these silicones in 3D printing process have been compared and summarized. This systematic evaluation methodology can be applied for silicone material selection and printing of silicone parts with complicated architectures.

Abstract Image

材料挤压增材制造中的有机硅流变特性
增材制造(AM),被称为三维(3D)打印,使用计算机控制的材料沉积来制造3D物体,通过选择性地沉积材料,通常以分层的方式,使用自由形式制造来构建3D物体。由于有机硅具有优异的机械性能、耐热性和化学惰性等重要的应用特性,将有机硅弹性体与AM沉积策略集成已经引起了人们的兴趣。本文研究了热固化液态硅橡胶原料的剪切减薄特性,以描述液态硅橡胶直接墨水书写的理想流动和形状保持特性。为了补充本研究中为硅树脂AM开发的直接墨水书写过程,在平行板振荡剪切流变的支持下,通过使用AM流体分配器在不同压力下测量流变特性,确定了各种硅树脂原料的流动特性。介绍了评价和研究7种不同等级有机硅增材制造性能的系统方法。对这些有机硅材料在3D打印过程中的形状保持、悬垂和尺寸精度进行了比较和总结。该评价方法可应用于结构复杂的有机硅零件的材料选择和打印。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信