Review of the NRC Canada studies on fire resistance of floor assemblies: Results, design guidelines and research gaps

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Linbo Zhang, Mohamed A. Sultan
{"title":"Review of the NRC Canada studies on fire resistance of floor assemblies: Results, design guidelines and research gaps","authors":"Linbo Zhang,&nbsp;Mohamed A. Sultan","doi":"10.1002/fam.3244","DOIUrl":null,"url":null,"abstract":"<p>The National Research Council Canada conducted two major fire resistance studies on floor assemblies over the past two decades. Despite the publication of the experimental results, there is a lack of suggested guidelines for design practitioners and gaps for future research. Thus, this paper comprehensively reviews the fire resistance results of 85 full-scale floor tests, suggests design guidelines, and identifies research gaps. These efforts aim to enhance the understanding and support the potential improvement of the fire performance of floor assemblies. The review of the results covers the impact of various design parameters on the fire resistance of floor assemblies, such as framing type and spacing, insulation type, subfloor configuration, resilient channel spacing, number of gypsum board layers, and screw spacing from the board edge. Although the interaction of these factors is complex, some of them play significant roles in determining the overall fire resistance of floor assemblies. For instance, rock and cellulose insulation outperformed glass fibre, a wider resilient channel spacing lowered fire resistance, whilst an increased distance of screws from the board edge improved the fire resistance. More importantly, detailed explanations are provided for the influences these parameters exert on fire resistance. Following this detailed examination of the results, design guidelines are provided for practitioners' consideration. A comparison is made between the experimental results and predictions from the component additive methods in the Canadian and Euro Codes, demonstrating that both methods yield conservative results. Finally, this paper concludes by identifying research gaps and providing recommendations for future investigations, including the necessity of experimental studies on floor assemblies with new design configurations and the promising role of machine learning in fire resistance evaluation.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 1","pages":"40-58"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3244","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The National Research Council Canada conducted two major fire resistance studies on floor assemblies over the past two decades. Despite the publication of the experimental results, there is a lack of suggested guidelines for design practitioners and gaps for future research. Thus, this paper comprehensively reviews the fire resistance results of 85 full-scale floor tests, suggests design guidelines, and identifies research gaps. These efforts aim to enhance the understanding and support the potential improvement of the fire performance of floor assemblies. The review of the results covers the impact of various design parameters on the fire resistance of floor assemblies, such as framing type and spacing, insulation type, subfloor configuration, resilient channel spacing, number of gypsum board layers, and screw spacing from the board edge. Although the interaction of these factors is complex, some of them play significant roles in determining the overall fire resistance of floor assemblies. For instance, rock and cellulose insulation outperformed glass fibre, a wider resilient channel spacing lowered fire resistance, whilst an increased distance of screws from the board edge improved the fire resistance. More importantly, detailed explanations are provided for the influences these parameters exert on fire resistance. Following this detailed examination of the results, design guidelines are provided for practitioners' consideration. A comparison is made between the experimental results and predictions from the component additive methods in the Canadian and Euro Codes, demonstrating that both methods yield conservative results. Finally, this paper concludes by identifying research gaps and providing recommendations for future investigations, including the necessity of experimental studies on floor assemblies with new design configurations and the promising role of machine learning in fire resistance evaluation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fire and Materials
Fire and Materials 工程技术-材料科学:综合
CiteScore
4.60
自引率
5.30%
发文量
72
审稿时长
3 months
期刊介绍: Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals. Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信