Rapid colonization of a space-returned Ryugu sample by terrestrial microorganisms

IF 2.2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Matthew J. Genge, Natasha Almeida, Matthias Van Ginneken, Lewis Pinault, Louisa J. Preston, Penelope J. Wozniakiewicz, Hajime Yano
{"title":"Rapid colonization of a space-returned Ryugu sample by terrestrial microorganisms","authors":"Matthew J. Genge,&nbsp;Natasha Almeida,&nbsp;Matthias Van Ginneken,&nbsp;Lewis Pinault,&nbsp;Louisa J. Preston,&nbsp;Penelope J. Wozniakiewicz,&nbsp;Hajime Yano","doi":"10.1111/maps.14288","DOIUrl":null,"url":null,"abstract":"<p>The presence of microorganisms within meteorites has been used as evidence for extraterrestrial life, however, the potential for terrestrial contamination makes their interpretation highly controversial. Here, we report the discovery of rods and filaments of organic matter, which are interpreted as filamentous microorganisms, on a space-returned sample from 162173 Ryugu recovered by the Hayabusa 2 mission. The observed carbonaceous filaments have sizes and morphologies consistent with microorganisms and are spatially associated with indigenous organic matter. The abundance of filaments changed with time and suggests the growth and decline of a prokaryote population with a generation time of 5.2 days. The population statistics indicate an extant microbial community originating through terrestrial contamination. The discovery emphasizes that terrestrial biota can rapidly colonize extraterrestrial specimens even given contamination control precautions. The colonization of a space-returned sample emphasizes that extraterrestrial organic matter can provide a suitable source of metabolic energy for heterotrophic organisms on Earth and other planets.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 1","pages":"64-73"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14288","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14288","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of microorganisms within meteorites has been used as evidence for extraterrestrial life, however, the potential for terrestrial contamination makes their interpretation highly controversial. Here, we report the discovery of rods and filaments of organic matter, which are interpreted as filamentous microorganisms, on a space-returned sample from 162173 Ryugu recovered by the Hayabusa 2 mission. The observed carbonaceous filaments have sizes and morphologies consistent with microorganisms and are spatially associated with indigenous organic matter. The abundance of filaments changed with time and suggests the growth and decline of a prokaryote population with a generation time of 5.2 days. The population statistics indicate an extant microbial community originating through terrestrial contamination. The discovery emphasizes that terrestrial biota can rapidly colonize extraterrestrial specimens even given contamination control precautions. The colonization of a space-returned sample emphasizes that extraterrestrial organic matter can provide a suitable source of metabolic energy for heterotrophic organisms on Earth and other planets.

Abstract Image

陆地微生物对太空返回的琉球样本的快速定植
陨石中微生物的存在已被用作外星生命存在的证据,然而,潜在的地球污染使他们的解释极具争议。在这里,我们报告了在隼鸟2号任务从162173龙宫回收的空间样本中发现的有机物质的棒状和细丝状,这些物质被解释为丝状微生物。所观察到的碳质细丝具有与微生物一致的大小和形态,并且在空间上与本地有机质相关。菌丝丰度随时间的变化而变化,表明一个世代为5.2 d的原核生物种群的生长和衰退。种群统计表明现存的微生物群落起源于陆地污染。这一发现强调,即使采取污染控制措施,陆地生物群也能迅速殖民外星标本。太空返回样本的殖民化强调了地外有机物可以为地球和其他行星上的异养生物提供合适的代谢能量来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Meteoritics & Planetary Science
Meteoritics & Planetary Science 地学天文-地球化学与地球物理
CiteScore
3.90
自引率
31.80%
发文量
121
审稿时长
3 months
期刊介绍: First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信