{"title":"Exploring Metaheuristic Optimization Algorithms in the Context of Textual Cyberharassment: A Systematic Review","authors":"Fatima Shannaq, Mohammad Shehab, Areej Alshorman, Mahmoud Hammad, Bassam Hammo, Wala'a Al-Omari","doi":"10.1111/exsy.13826","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The digital landscape and rapid advancement of Information and Communication Technology have significantly increased social interactions, but it has also led to a rise in harmful behaviours such as offensive language, cyberbullying, and HS. Addressing online harassment is critical due to its severe consequences. This study offers a comprehensive evaluation of existing studies that employed metaheuristic optimization algorithms for detecting textual harassment content across social media platforms, highlighting their strengths and limitations. Using the PRISMA methodology, we reviewed and analysed 271 research papers, ultimately narrowing down the selection to 36 papers based on specific inclusion and exclusion criteria. By analysing key factors such as optimization techniques, feature engineering strategies, and dataset characteristics, we identify crucial trends and challenges in the field. Finally, we offer practical recommendations to improve the accuracy of predictive models, including adopting hybrid approaches, enhancing multilingual capabilities, and expanding models to operate effectively across various social media platforms.</p>\n </div>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13826","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The digital landscape and rapid advancement of Information and Communication Technology have significantly increased social interactions, but it has also led to a rise in harmful behaviours such as offensive language, cyberbullying, and HS. Addressing online harassment is critical due to its severe consequences. This study offers a comprehensive evaluation of existing studies that employed metaheuristic optimization algorithms for detecting textual harassment content across social media platforms, highlighting their strengths and limitations. Using the PRISMA methodology, we reviewed and analysed 271 research papers, ultimately narrowing down the selection to 36 papers based on specific inclusion and exclusion criteria. By analysing key factors such as optimization techniques, feature engineering strategies, and dataset characteristics, we identify crucial trends and challenges in the field. Finally, we offer practical recommendations to improve the accuracy of predictive models, including adopting hybrid approaches, enhancing multilingual capabilities, and expanding models to operate effectively across various social media platforms.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.