Passivity-based event-triggered frequency control in power system using dynamic pricing

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Yasutomo Shibata, Heng Kang, Toru Namerikawa
{"title":"Passivity-based event-triggered frequency control in power system using dynamic pricing","authors":"Yasutomo Shibata,&nbsp;Heng Kang,&nbsp;Toru Namerikawa","doi":"10.1049/cth2.12742","DOIUrl":null,"url":null,"abstract":"<p>The integration of renewable energy resources in modern power systems promotes flexible demand response but poses challenges to power balance and frequency stability due to their intermittent generation. To address this problem, this study deals with the frequency control of power system in the presence of demand responses. The dynamic electricity pricing scheme enabling both demand response participants and suppliers to contribute to the frequency regulation via their own decision-making process is proposed. The main concern in the controller design is the integration of physical and human systems on the same timescale, encompassing controllers based on frequency dynamics and dynamic pricing. Therefore, event-triggered conditions are proposed to decrease the communication frequency while ensuring system stability, leveraging the passivity property of the system. Under the proposed event-triggered conditions, the authors clearly demonstrate the asymptotic stability around the equilibrium point of the entire system. Furthermore, a numerical simulation using a four areas power network system is performed, confirming the effectiveness of the proposed control scheme and the stability of the system.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12742","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12742","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of renewable energy resources in modern power systems promotes flexible demand response but poses challenges to power balance and frequency stability due to their intermittent generation. To address this problem, this study deals with the frequency control of power system in the presence of demand responses. The dynamic electricity pricing scheme enabling both demand response participants and suppliers to contribute to the frequency regulation via their own decision-making process is proposed. The main concern in the controller design is the integration of physical and human systems on the same timescale, encompassing controllers based on frequency dynamics and dynamic pricing. Therefore, event-triggered conditions are proposed to decrease the communication frequency while ensuring system stability, leveraging the passivity property of the system. Under the proposed event-triggered conditions, the authors clearly demonstrate the asymptotic stability around the equilibrium point of the entire system. Furthermore, a numerical simulation using a four areas power network system is performed, confirming the effectiveness of the proposed control scheme and the stability of the system.

Abstract Image

基于无源性的动态定价电力系统事件触发频率控制
可再生能源在现代电力系统中的整合促进了灵活的需求响应,但由于其间歇性发电,对功率平衡和频率稳定提出了挑战。为了解决这一问题,本文研究了存在需求响应时电力系统的频率控制问题。提出了一种动态电价方案,使需求响应参与者和供应商都能通过自己的决策过程对频率调节做出贡献。控制器设计的主要关注点是在同一时间尺度上集成物理系统和人类系统,包括基于频率动态和动态定价的控制器。因此,提出了事件触发条件,在保证系统稳定性的同时降低通信频率,充分利用系统的无源特性。在所提出的事件触发条件下,作者清楚地证明了整个系统在平衡点附近的渐近稳定性。最后,对一个四区电网系统进行了数值仿真,验证了所提控制方案的有效性和系统的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信