Enhancing Psychologists' Understanding Through Explainable Deep Learning Framework for ADHD Diagnosis

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Expert Systems Pub Date : 2024-11-13 DOI:10.1111/exsy.13788
Abdul Rehman, Jerry Chun-Wei Lin, Ilona Heldal
{"title":"Enhancing Psychologists' Understanding Through Explainable Deep Learning Framework for ADHD Diagnosis","authors":"Abdul Rehman,&nbsp;Jerry Chun-Wei Lin,&nbsp;Ilona Heldal","doi":"10.1111/exsy.13788","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that is challenging to diagnose and requires advanced approaches for reliable and transparent identification and classification. It is characterised by a pattern of inattention, hyperactivity and impulsivity that is more severe and more frequent than in individuals with a comparable level of development. In this paper, an explainable framework based on a fine-tuned hybrid Deep Neural Network (DNN) and Recurrent Neural Network (RNN) called <i>HyExDNN-RNN</i> model is proposed for ADHD detection, multi-class categorization and decision interpretation. This framework not only detects ADHD but also provides interpretable insights into the diagnostic process so that psychologists can better understand and trust the results of the diagnosis. We use the Pearson correlation coefficient for optimal feature selection and machine and deep learning models for experimental analysis and comparison. We use a standardised technique for feature reduction, model selection and interpretation to accurately determine the diagnosis rate and ensure the interpretability of the proposed framework. Our framework provided excellent results on binary classification, with <i>HyExDNN-RNN</i> achieving an F1-score of 99% and 94.2% on multi-class categorization. XAI approaches, in particular SHapley Additive exPlanations (SHAP) and Permutation Feature Importance (PFI), provided important insights into the importance of features and the decision logic of models. By combining AI with human expertise, we aim to bridge the gap between advanced computational techniques and practical psychological applications. These results demonstrate the potential of our framework to assist in ADHD diagnosis and interpretation.</p>\n </div>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13788","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that is challenging to diagnose and requires advanced approaches for reliable and transparent identification and classification. It is characterised by a pattern of inattention, hyperactivity and impulsivity that is more severe and more frequent than in individuals with a comparable level of development. In this paper, an explainable framework based on a fine-tuned hybrid Deep Neural Network (DNN) and Recurrent Neural Network (RNN) called HyExDNN-RNN model is proposed for ADHD detection, multi-class categorization and decision interpretation. This framework not only detects ADHD but also provides interpretable insights into the diagnostic process so that psychologists can better understand and trust the results of the diagnosis. We use the Pearson correlation coefficient for optimal feature selection and machine and deep learning models for experimental analysis and comparison. We use a standardised technique for feature reduction, model selection and interpretation to accurately determine the diagnosis rate and ensure the interpretability of the proposed framework. Our framework provided excellent results on binary classification, with HyExDNN-RNN achieving an F1-score of 99% and 94.2% on multi-class categorization. XAI approaches, in particular SHapley Additive exPlanations (SHAP) and Permutation Feature Importance (PFI), provided important insights into the importance of features and the decision logic of models. By combining AI with human expertise, we aim to bridge the gap between advanced computational techniques and practical psychological applications. These results demonstrate the potential of our framework to assist in ADHD diagnosis and interpretation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems
Expert Systems 工程技术-计算机:理论方法
CiteScore
7.40
自引率
6.10%
发文量
266
审稿时长
24 months
期刊介绍: Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper. As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信