On the Quest for Oxygen Evolution Reaction Catalysts Based on Layered Double Hydroxides: An Electrochemical and Chemometric Combined Approach

IF 6.2 Q2 ENERGY & FUELS
Isacco Gualandi, Elisa Musella, Giulia Costa, Massimo Gazzano, Erika Scavetta, Sergio Zappoli, Domenica Tonelli
{"title":"On the Quest for Oxygen Evolution Reaction Catalysts Based on Layered Double Hydroxides: An Electrochemical and Chemometric Combined Approach","authors":"Isacco Gualandi,&nbsp;Elisa Musella,&nbsp;Giulia Costa,&nbsp;Massimo Gazzano,&nbsp;Erika Scavetta,&nbsp;Sergio Zappoli,&nbsp;Domenica Tonelli","doi":"10.1002/aesr.202400233","DOIUrl":null,"url":null,"abstract":"<p>\nThe oxygen evolution reaction (OER) is a crucial process in various energy conversion and storage technologies, such as water electrolysis. Developing efficient and cost-effective electrocatalysts is essential to achieve the commercialization of devices for the transition toward sustainable energy solutions. Herein, ternary layer double hydroxides (LDHs) are synthesized and characterized as electrocatalysts for OER using a potentiodynamic electrochemical deposition method on Grafoil. A chemometric approach based on experimental design is employed to rationalize the effort in the investigation of the LDHs which are based on Ni, Co, and Fe. The deposited films are characterized using cyclic voltammetry and X-ray diffraction to determine peak currents and potentials, and crystal size. Furthermore, the electrocatalyst performances are assessed by linear sweep voltammetry in 1M KOH from which the Tafel slope and onset potential are calculated. The obtained data are used to derive models describing the material properties and electrocatalyst performance as a function of the electrolyte composition used during the LDHs electrodeposition. This study provides valuable insights into the relationship between the electrocatalyst composition and its OER activity, enabling the design of more efficient and sustainable electrochemical systems for energy applications.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400233","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The oxygen evolution reaction (OER) is a crucial process in various energy conversion and storage technologies, such as water electrolysis. Developing efficient and cost-effective electrocatalysts is essential to achieve the commercialization of devices for the transition toward sustainable energy solutions. Herein, ternary layer double hydroxides (LDHs) are synthesized and characterized as electrocatalysts for OER using a potentiodynamic electrochemical deposition method on Grafoil. A chemometric approach based on experimental design is employed to rationalize the effort in the investigation of the LDHs which are based on Ni, Co, and Fe. The deposited films are characterized using cyclic voltammetry and X-ray diffraction to determine peak currents and potentials, and crystal size. Furthermore, the electrocatalyst performances are assessed by linear sweep voltammetry in 1M KOH from which the Tafel slope and onset potential are calculated. The obtained data are used to derive models describing the material properties and electrocatalyst performance as a function of the electrolyte composition used during the LDHs electrodeposition. This study provides valuable insights into the relationship between the electrocatalyst composition and its OER activity, enabling the design of more efficient and sustainable electrochemical systems for energy applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
3.40%
发文量
0
期刊介绍: Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields. In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including: CAS: Chemical Abstracts Service (ACS) Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (Clarivate Analytics) INSPEC (IET) Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信