{"title":"Artificial Neural Networks-Based LEACH Algorithm for Fast and Efficient Cluster Head Selection in Wireless Sensor Networks","authors":"Arafat Senturk","doi":"10.1002/dac.6127","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Recent improvements in wireless sensor networks (WSN) technology enabled more research on energy efficiency. Limited battery and difficulties in renewing the batteries in a critical application require the efficient use of energy for WSN. Besides energy efficiency, providing fast-response systems facilitate real-time applications. Combining machine learning (ML) with the clustering methods that significantly contribute to the energy efficiency of WSN seems to improve the efficiency. In this paper, the low-energy adaptive clustering hierarchy (LEACH) clustering method for WSN is implemented through a supervised learning method, artificial neural networks (ANN), for cluster head (CH) selection. The power of ANN as a superior classifier is thought to contribute much to the field. The details of designing an ANN are given in detail for the first time in WSN field. In addition, a dataset is prepared via MATLAB to be used for classification or other analysis related to a clustered network. The proposed model provides more than 85% accuracy for CH selection, and it is 83.28% faster than LEACH to determine the CHs. This method produces more efficient solutions in large networks in terms of the time for CH selection. The feasibility of ANN is also shown for the issues related to WSN such as CH selection.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.6127","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recent improvements in wireless sensor networks (WSN) technology enabled more research on energy efficiency. Limited battery and difficulties in renewing the batteries in a critical application require the efficient use of energy for WSN. Besides energy efficiency, providing fast-response systems facilitate real-time applications. Combining machine learning (ML) with the clustering methods that significantly contribute to the energy efficiency of WSN seems to improve the efficiency. In this paper, the low-energy adaptive clustering hierarchy (LEACH) clustering method for WSN is implemented through a supervised learning method, artificial neural networks (ANN), for cluster head (CH) selection. The power of ANN as a superior classifier is thought to contribute much to the field. The details of designing an ANN are given in detail for the first time in WSN field. In addition, a dataset is prepared via MATLAB to be used for classification or other analysis related to a clustered network. The proposed model provides more than 85% accuracy for CH selection, and it is 83.28% faster than LEACH to determine the CHs. This method produces more efficient solutions in large networks in terms of the time for CH selection. The feasibility of ANN is also shown for the issues related to WSN such as CH selection.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.