Compressive sensing principles applied in time and space for three-dimensional land seismic data acquisition and processing

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Woodon Jeong, Constantinos Tsingas, Mohammed S. Almubarak, Yue Ma
{"title":"Compressive sensing principles applied in time and space for three-dimensional land seismic data acquisition and processing","authors":"Woodon Jeong,&nbsp;Constantinos Tsingas,&nbsp;Mohammed S. Almubarak,&nbsp;Yue Ma","doi":"10.1111/1365-2478.13654","DOIUrl":null,"url":null,"abstract":"<p>Compressive sensing introduces novel perspectives on non-uniform sampling, leading to substantial reductions in acquisition cost and cycle time compared to current seismic exploration practices. Non-uniform spatial sampling, achieved through source and/or receiver areal distributions, and non-uniform temporal sampling, facilitated by simultaneous-source acquisition schemes, enable compression and/or reduction of seismic data acquisition time and cost. However, acquiring seismic data using compressive sensing may encounter challenges such as an extremely low signal-to-noise ratio and the generation of interference noise from adjacent sources. A significant challenge to this innovative approach is to demonstrate the translation of theoretical gains in sampling efficiency into operational efficiency in the field. In this study, we propose a spatial compression scheme based on compressive sensing theory, aiming to obtain an undersampled survey geometry by minimizing the mutual coherence of a spatial sampling operator. Building upon an optimised spatial compression geometry, we subsequently consider temporal compression through a simultaneous-source acquisition scheme. To address challenges arising from the recorded compressed seismic data in the non-uniform temporal and spatial domains, such as missing traces and crosstalk noise, we present a joint deblending and reconstruction algorithm. Our proposed algorithm employs the iterative shrinkage-thresholding method to solve an <i>ℓ</i><sub>2</sub>–<i>ℓ</i><sub>1</sub> optimization problem in the frequency–wavenumber–wavenumber (<i>ω</i>–<i>k<sub>x</sub></i>–<i>k<sub>y</sub></i>) domain. Numerical experiments demonstrate that the proposed algorithm produces excellent deblending and reconstruction results, preserving data quality and reliability. These results are compared with non-blended and uniformly acquired data from the same location illustrating the robustness of the application. This study exemplifies how the theoretical improvements based on compressive sensing principles can significantly impact seismic data acquisition in terms of spatial and temporal sampling efficiency.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 1","pages":"3-18"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13654","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Compressive sensing introduces novel perspectives on non-uniform sampling, leading to substantial reductions in acquisition cost and cycle time compared to current seismic exploration practices. Non-uniform spatial sampling, achieved through source and/or receiver areal distributions, and non-uniform temporal sampling, facilitated by simultaneous-source acquisition schemes, enable compression and/or reduction of seismic data acquisition time and cost. However, acquiring seismic data using compressive sensing may encounter challenges such as an extremely low signal-to-noise ratio and the generation of interference noise from adjacent sources. A significant challenge to this innovative approach is to demonstrate the translation of theoretical gains in sampling efficiency into operational efficiency in the field. In this study, we propose a spatial compression scheme based on compressive sensing theory, aiming to obtain an undersampled survey geometry by minimizing the mutual coherence of a spatial sampling operator. Building upon an optimised spatial compression geometry, we subsequently consider temporal compression through a simultaneous-source acquisition scheme. To address challenges arising from the recorded compressed seismic data in the non-uniform temporal and spatial domains, such as missing traces and crosstalk noise, we present a joint deblending and reconstruction algorithm. Our proposed algorithm employs the iterative shrinkage-thresholding method to solve an 21 optimization problem in the frequency–wavenumber–wavenumber (ωkxky) domain. Numerical experiments demonstrate that the proposed algorithm produces excellent deblending and reconstruction results, preserving data quality and reliability. These results are compared with non-blended and uniformly acquired data from the same location illustrating the robustness of the application. This study exemplifies how the theoretical improvements based on compressive sensing principles can significantly impact seismic data acquisition in terms of spatial and temporal sampling efficiency.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信